312 Burst Balloons
Given
n
balloons, indexed from0
ton-1
. Each balloon is painted with a number on it represented by arraynums
. You are asked to burst all the balloons. If the you burst ballooni
you will getnums[left] * nums[i] * nums[right]
coins. Hereleft
andright
are adjacent indices ofi
. After the burst, theleft
andright
then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Example:
Input: [3,1,5,8]
Output: 167
Explanation: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
Note:
- You may imagine
nums[-1] = nums[n] = 1
. They are not real therefore you can not burst them.- 0 ≤
n
≤ 500, 0 ≤nums[i]
≤ 100
解释下题目:
给定一个数组,然后移除一个数字,这个数字和它左边,它右边的数字,这三个数字乘起来就是你能得到的分值,然后继续往复,直到把全部的气球打掉,求出最大的分值。
1. DP
实际耗时:6ms
public int maxCoins(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
// init new array
int[] num = new int[nums.length + 2];
num[0] = 1;
num[nums.length + 1] = 1;
for (int i = 0; i < nums.length; i++) {
num[i + 1] = nums[i];
}
System.out.println(Arrays.toString(num));
// start dp
int[][] dp = new int[num.length][num.length];
for (int i = 2; i < num.length; i++) {
for (int left = 0; left < num.length - i; left++) {
int right = left + i;
for (int j = left + 1; j < right; j++)
dp[left][right] = Math.max(dp[left][right], num[left] * num[j] * num[right] + dp[left][j] + dp[j][right]);
}
}
return dp[0][num.length - 1];
}
这是我做过的比较难的DP题目了。拿到题目首先想到的是用暴力。暴力的话,相当于时间复杂度是O(n!),这显然是不能接受的,肯定需要优化,所以当时想的是,因为最小的数字乘起来肯定是亏的,所以我想的是找到整个数组中最小的数,然后把它打掉,,这样就能有效减少遍历次数;但是!这是不可行的,样例就是一个反例.....所以这种方法放弃,故只能转而寻找动态规划的方法。
其实动态规划也想了半天,下不去手,因为实在选不出应该先打破哪个气球,主要是你打破任意一个气球之后,都会影响到后面的,实在找不出解决办法,最后去网上看了这篇解法,豁然开朗,你不要想着打破哪个,而是保留哪个,这应该也是这个算法最难的地方了,其他地方参考那篇解法,写的很赞了。