云计算技术积累Java技术升华

kafka工作原理介绍

2019-04-29  本文已影响2人  梅_梅

两张图读懂kafka应用:

image.png
image.png

1. Kafka 中的术语

2. 详细说明

Broker
中间的kafka cluster,存储消息,是由多个server组成的集群。

image.png

topic与消息
kafka将所有消息组织成多个topic的形式存储,而每个topic又可以拆分成多个partition,每个partition又由一个一个消息组成。每个消息都被标识了一个递增序列号代表其进来的先后顺序,并按顺序存储在partition中。

image.png

这样,消息就以一个个id的方式,组织起来。

Partitions
每个Topics划分为一个或者多个Partition,并且Partition中的每条消息都被标记了一个sequential id ,也就是offset,并且存储的数据是可配置存储时间的

producer

consumer
传统消息系统有两种模式:

kafka通过consumer group将两种模式统一处理:每个consumer将自己标记consumer group名称,之后系统会将consumer group按名称分组,将消息复制并分发给所有分组,每个分组只有一个consumer能消费这条消息。如下图:


image.png

于是推理出两个极端情况:

注意

kafka通过partition的概念,保证了partition内消息有序性,缓解了上面的问题。partition内消息会复制分发给所有分组,每个分组只有一个consumer能消费这条消息。这个语义保证了某个分组消费某个分区的消息,是同步而非并发的。如果一个topic只有一个partition,那么这个topic并发消费有序,否则只是单个partition有序。

一般消息系统,consumer存在两种消费模型:

kafka采用pull,并采用可配置化参数保证当存在数据并且数据量达到一定量的时候,consumer端才进行pull操作,否则一直处于block状态。kakfa采用整数值consumer position来记录单个分区的消费状态,并且单个分区单个消息只能被consumer group内的一个consumer消费,维护简单开销小。消费完成,broker收到确认,position指向下次消费的offset。由于消息不会删除,在完成消费,position更新之后,consumer依然可以重置offset重新消费历史消息。

消息发送语义
producer视角

consumer视角

注意:

可用性
在kafka中,正常情况下所有node处于同步中状态,当某个node处于非同步中状态,也就意味着整个系统出问题,需要做容错处理。

同步中代表了:

某个分区内同步中的node组成一个集合,即该分区的ISR。

kafka通过两个手段容错:

failover:

另外,kafka有个保障:当producer生产消息时,只有当消息被所有ISR确认时,才表示该消息提交成功。只有提交成功的消息,才能被consumer消费。

因此,当有N个副本时,N个副本都在ISR中,N-1个副本都出现异常时,系统依然能提供服务。

假设N副本全挂了,node恢复后会面临同步数据的过程,这期间ISR中没有node,会导致该分区服务不可用。kafka采用一种降级措施来处理:选举第一个恢复的node作为leader提供服务,以它的数据为基准,这个措施被称为脏leader选举。由于leader是主要提供服务的,kafka broker将多个partition的leader均分在不同的server上以均摊风险。每个parition都有leader,如果在每个partition内运行选主进程,那么会导致产生非常多选主进程。kakfa采用一种轻量级的方式:从broker集群中选出一个作为controller,这个controller监控挂掉的broker,为上面的分区批量选主。

一致性
上面的方案保证了数据高可用,有时高可用是体现在对一致性的牺牲上。如果希望达到强一致性,可以采取如下措施:

持久化
基于以下几点事实,kafka重度依赖磁盘而非内存来存储消息。

2. 参考文档

kafka官方文档
Kafka全解析
小白也能看懂的简单明了kafka原理解析

3.原文链接

原文:https://blog.csdn.net/qq_29186199/article/details/80827085

上一篇下一篇

猜你喜欢

热点阅读