flink入门

flink学习之四-使用kafka作为数据源

2019-03-13  本文已影响178人  AlanKim

上文中基于spring、druid及mysql实现了基于db的数据源,本文使用kafka作为数据源。

FlinkKafkaConsumer010

flink中已经预置了kafka相关的数据源实现FlinkKafkaConsumer010,先看下具体的实现:

@PublicEvolving
public class FlinkKafkaConsumer010<T> extends FlinkKafkaConsumer09<T> {
    private static final long serialVersionUID = 2324564345203409112L;

    public FlinkKafkaConsumer010(String topic, DeserializationSchema<T> valueDeserializer, Properties props) {
        this(Collections.singletonList(topic), valueDeserializer, props);
    }

    public FlinkKafkaConsumer010(String topic, KeyedDeserializationSchema<T> deserializer, Properties props) {
        this(Collections.singletonList(topic), deserializer, props);
    }

    public FlinkKafkaConsumer010(List<String> topics, DeserializationSchema<T> deserializer, Properties props) {
        this((List)topics, (KeyedDeserializationSchema)(new KeyedDeserializationSchemaWrapper(deserializer)), props);
    }

    public FlinkKafkaConsumer010(List<String> topics, KeyedDeserializationSchema<T> deserializer, Properties props) {
        super(topics, deserializer, props);
    }

    @PublicEvolving
    public FlinkKafkaConsumer010(Pattern subscriptionPattern, DeserializationSchema<T> valueDeserializer, Properties props) {
        this((Pattern)subscriptionPattern, (KeyedDeserializationSchema)(new KeyedDeserializationSchemaWrapper(valueDeserializer)), props);
    }

    @PublicEvolving
    public FlinkKafkaConsumer010(Pattern subscriptionPattern, KeyedDeserializationSchema<T> deserializer, Properties props) {
        super(subscriptionPattern, deserializer, props);
    }
    ......
       
}

kafka的Consumer有一堆实现,不过最终都是继承自FlinkKafkaConsumerBase,而这个抽象类则是继承RichParallelSourceFunction,是不是很眼熟,跟上面自定义mysql数据源继承的抽象类RichSourceFunction很类似。

public abstract class FlinkKafkaConsumerBase<T> extends RichParallelSourceFunction<T> implements CheckpointListener, ResultTypeQueryable<T>, CheckpointedFunction 

可以看到,这里有很多构造函数,我们直接使用即可。

代码使用

package myflink.job;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;

import java.util.Properties;

/**
 * kafka作为数据源,消费kafka中的消息
 * 教程详见
 * @See http://www.54tianzhisheng.cn/tags/Flink/
 */
public class KafkaDatasouceForFlinkJob {

    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        Properties properties = new Properties();
        properties.put("bootstrap.servers","localhost:9092");
        properties.put("zookeeper.connect","localhost:2181");
        properties.put("group.id","metric-group");
        properties.put("auto.offset.reset","latest");
        properties.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        properties.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");

        DataStreamSource<String> dataStreamSource = env.addSource(
                new FlinkKafkaConsumer010<String>(
                        "testjin" ,// topic
                        new SimpleStringSchema(),
                        properties
                )
        ).setParallelism(1);

//        dataStreamSource.print();
        // 同样效果
        dataStreamSource.addSink(new PrintSinkFunction<>());

        env.execute("Flink add kafka data source");
    }
}

说明:

a、这里直接使用properties对象来设置kafka相关配置,比如brokers、zk、groupId、序列化、反序列化等。

b、使用FlinkKafkaConsumer010构造函数,指定topic、properties配置

c、SimpleStringSchema仅针对String类型数据的序列化及反序列化,如果kafka中消息的内容不是String,则会报错;看下SimpleStringSchema的定义:

public class SimpleStringSchema implements DeserializationSchema<String>, SerializationSchema<String>

d、这里直接把获取到的消息打印出来。

至于kafka的安装、配置等,参见上文

kafka send消息:

package myflink;

import com.alibaba.fastjson.JSON;
import lombok.extern.slf4j.Slf4j;
import myflink.model.Metric;
import myflink.model.UrlInfo;
import org.apache.flink.shaded.guava18.com.google.common.collect.ImmutableMap;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Map;
import java.util.Properties;

@Slf4j
public class KafkaSender {

    private static final String kafkaTopic = "testjin";

    private static final String brokerAddress = "localhost:9092";

    private static Properties properties;

    private static void init() {
        properties = new Properties();
        properties.put("bootstrap.servers", brokerAddress);
        properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

    }

    public static void main(String[] args) throws InterruptedException {
        init();
        while (true) {
            Thread.sleep(3000); // 每三秒发送过一次
            sendUrlToKafka(); // 发送kafka消息
        }
    }

    private static void sendUrlToKafka() {
        KafkaProducer producer = new KafkaProducer<String, String>(properties);

        UrlInfo urlInfo = new UrlInfo();
        long currentMills = System.currentTimeMillis();
        if (currentMills % 100 > 30) {
            urlInfo.setUrl("http://so.com/" + currentMills);
        } else {
            urlInfo.setUrl("http://baidu.com/" + currentMills);
        }

        String msgContent = JSON.toJSONString(urlInfo); // 确保发送的消息都是string类型
        ProducerRecord record = new ProducerRecord<String, String>(kafkaTopic, null, null, msgContent);
        producer.send(record);

        log.info("send msg:" + msgContent);

        producer.flush();
    }
}
上一篇下一篇

猜你喜欢

热点阅读