HadoopIT课程分享开源软件实验室

赵丽颖固然漂亮,可这份Hadoop核心教程也不差呀

2019-01-17  本文已影响20人  蓝桥云课

**阿里巴巴****采用了 15 个节点组成的 Hadoop 集群,用于处理从数据库中导出的商业数据的排序和组合。

**Ebay ****使用了 32 个节点组成的集群,包括 8 * 532 个计算核心以及 5.3 PB 的存储。该公司大量使用了 Java 编写的 MapReduce 应用,以及 Pig 、 Hive 和 HBase 的组合应用以研究搜索优化。

**Facebook ****主要使用 Hadoop 来存储内部日志和结构化数据源的副本,并且将其作为数据报告、数据分析和机器学习的数据源。

什么是Hadoop?

Apache Hadoop 是一款支持数据密集型分布式应用并以 Apache 2.0 许可协议发布的开源软件框架。

Hadoop 框架透明地为应用提供可靠性和数据移动。它实现了名为 MapReduce 的编程范式:应用程序被分割成许多小部分,而每个部分都能在集群中的任意节点上执行或重新执行。

此外,Hadoop 还提供了分布式文件系统,用以存储所有计算节点的数据,这为整个集群带来了非常高的带宽。

核心概念

Hadoop 项目主要包含了以下四个模块:

1. Hadoop 通用模块(Hadoop Common): 为其他 Hadoop 模块提供支持的公共实用程序。

2. Hadoop 分布式文件系统(HDFS, Hadoop Distributed File System):提供对应用程序数据的高吞吐量访问的分布式文件系统。

3. Hadoop YARN:任务调度和集群资源管理框架。

4. Hadoop MapReduce: 基于 YARN 的大规模数据集并行计算框架。

对于初次学习 Hadoop 的用户而言,应重点关注 HDFS 和 MapReduce。作为一个分布式计算框架,HDFS 承载了该框架对于数据的存储需求,而 MapReduce 满足了该框架对于数据的计算需求。

下图是 Hadoop 集群的基本架构:

Hadoop 生态体系

如同 Facebook 在 Hadoop 的基础上衍生了 Hive 数据仓库一样,社区中还有大量与之相关的开源项目,下面列出了一些近期比较活跃的项目:

HBase:一个可伸缩的、支持大表的结构化数据存储的分布式数据库。

Hive:提供数据汇总和临时查询的数据仓库基础框架。

Pig:用于并行计算的高级数据流语言和执行框架。

ZooKeeper:适用于分布式应用的高性能协调服务。

Spark:一个快速通用的 Hadoop 数据计算引擎,具有简单和富有表达力的编程模型,支持数据 ETL(提取、转换和加载)、机器学习、流处理和图形计算等方面的应用。

值得特别关注的是,Spark 这一分布式内存计算框架就是脱胎于 Hadoop 体系的,它对 HDFS 、YARN 等组件有了良好的继承,同时也改进了 Hadoop 现存的一些不足。部分学习者可能会对 Hadoop 和 Spark 的使用场景重叠产生疑问,但学习 Hadoop 的工作模式和编程模型,将有利于加深对 Spark 框架的理解,这也是本系列课程首先学习 Hadoop 的原因。

部署 Hadoop

Hadoop 主要有以下三种部署模式:

单机模式:在单台计算机上以单个进程的模式运行。

伪分布式模式:在单台计算机上以多个进程的模式运行。该模式可以在单节点下模拟“多节点”的场景。

完全分布式模式:在多台计算机上分别以单个进程的模式运行。

具体的部署步骤以及详细的教程大家可以 点击我 进行学习,因为内容还是比较广泛和充实的:

只要是你有一定的计算机基础和 Java 基础,并且对 Hadoop 感兴趣,相信都是可以完整地学下来的,大家加油!

相关阅读

8个爽滑的Windows小软件,不好用你拿王思葱砸死我

60人,42天,死磕机器学习,结果如下。

武侠版编程语言...Java像张无忌还是令狐冲?

大量机器学习&深度学习资料

技术变现,到底怎么变?

上一篇下一篇

猜你喜欢

热点阅读