转录组分析

假设检验 p-value,FDR,q-value

2020-03-26  本文已影响0人  奔跑的Forrest

1、p-value

单个假设检验中主要依靠p值(或统计量t)做出是否拒绝零假设H0的决定:p-value和预先设定的检验水准 α 做对比,如果p-value小于等于α,拒绝原假设,否则不拒绝原假设。

2、多重假设检验和总体错误率

在进行多重假设检验时,每个单独的假设都具有其本身的I型错误。在这种情况下,如果不进行任何的控制,犯I-型错误的概率会随着假设检验的个数而迅速增加。
多重假设检验中,广泛使用的错误控制指标是总体错误率(family-wise error rate,FWER),即至少出现一次错误地拒绝真实H0的可能性;FWER小于等于alpha。而研究者更关心的是能否尽量多地识别出差异表达的基因,并且能够容忍和允许总的拒绝中发生少量的错误识别,称为错误发现false discovery。即需要在错误发现和总的拒绝次数R之间寻找一种平衡,即在检验出尽可能多的候选变量的同时将错误发现率控制在一个可以接受的范围。

3、FDR校正后的p-value,即q-value

FDR错误控制法是Benjamini于1995年提出一种方法,通过控制FDR(False Discovery Rate)来决定P值的域值. 假设你挑选了R个差异表达的基因,其中有S个是真正有差异表达的,另外有V个其实是没有差异表达的,是假阳性的。实践中希望错误比例Q=V/R平均而言不 能超过某个预先设定的值(比如0.05),在统计学上,这也就等价于控制FDR不能超过5%.

对所有候选基因的p值进行从小到大排序,则若想控制fdr不能超过q,则只需找到最大的正整数i,使得 p(i)<= (i*q)/m.然后,挑选对应p(1),p(2),...,p(i)的基因做为差异表达基因,这样就能从统计学上保证fdr不超过q。
因此,FDR的计算公式如下:

q-value(i)=p(i)*length(p)/rank(p)

上一篇下一篇

猜你喜欢

热点阅读