白泽大数据

Byzer-lang 集成 Hive 2.3.9

2022-03-05  本文已影响0人  你的样子999

根据 Spark 文档, hive 2.x 只支持到 2.3.7。Hive 2.3.9 经测试能启动,但可能依然有兼容性问题, 这里还没测试。

环境介绍

单机安装以下应用. ubuntu 20.04 JDK 8。

应用 版本 安装目录 说明
Apache Hadoop 3.2.2 /work/server/hadoop-3.2.2/ 伪分布式
Apache Hive 2.3.9 /work/server/apache-hive-2.3.9-bin
MySQL 5.7.35 Docker 容器 Hive 元数据库,白泽 Notebook 数据库
Apache Spark 3.1.1-bin-hadop3.2 /work/server/spark_3.1.1-hive_2.3.9
Byzer-lang 3.0-2.3.0-SNAPSHOT /work/server/mlsql-engine_3.0-2.3.0-SNAPSHOT-hive_2.3.9/ 白泽引擎
Byzer-notebook 1.0.1-SNAPSHOT /work/notebook 白泽 Notebook

Hive 2.3.9 下载解压

请参考 Ubuntu 安装 Hive 2.x

Spark 3.1.1 适配

建立 hive-site.xml 软链接,Spark 可以找到 Hive MetaStore 连接信息

cd /work/server/spark_3.1.1-hive_2.3.9
ln -s /work/server/apache-hive-2.3.9-bin/conf/hive-site.xml hive-site.xml

配置 Hive MetaStore Jar

# 修改 spark-defaults.conf
cp spark-defaults.conf.template spark-defaults.conf
vi spark-defaults.conf

# 加入以下内容
# Hive 版本
# 2.3.9 导致报错,Available options are 0.12.0 through 2.3.7 and 3.0.0 through 3.1.2. 考虑到小版本差异,我们尝试一下。
spark.sql.hive.metastore.version=2.3.7
# 从本地路径加载 Hive Metastore Jar包。 
spark.sql.hive.metastore.jars=path
# 每个 jar 用 , 分割
spark.sql.hive.metastore.jars.path=file:///work/server/apache-hive-2.3.9-bin/lib/hive-metastore-2.3.9.jar,file:///work/server/apache-hive-2.3.9-bin/lib/hive-exec-2.3.9.jar,file:///work/server/apache-hive-2.3.9-bin/lib/commons-logging-1.2.jar,file:///work/server/apache-hive-2.3.9-bin/lib/commons-io-2.4.jar,file:///work/server/apache-hive-2.3.9-bin/lib/javax.servlet-api-3.1.0.jar,file:///work/server/apache-hive-2.3.9-bin/lib/commons-codec-1.4.jar,file:///work/server/apache-hive-2.3.9-bin/lib/libfb303-0.9.3.jar,file:///work/server/apache-hive-2.3.9-bin/lib/metrics-core-3.1.0.jar,file:///work/server/apache-hive-2.3.9-bin/lib/datanucleus-core-4.1.17.jar,file:///work/server/apache-hive-2.3.9-bin/lib/datanucleus-api-jdo-4.2.4.jar,file:///work/server/apache-hive-2.3.9-bin/lib/javax.jdo-3.2.0-m3.jar,file:///work/server/apache-hive-2.3.9-bin/lib/datanucleus-rdbms-4.1.19.jar,file:///work/server/apache-hive-2.3.9-bin/lib/HikariCP-2.5.1.jar,file:///work/server/apache-hive-2.3.9-bin/lib/mysql-connector-java-5.1.48.jar,file:///work/server/spark_3.1.1-hive_2.3.9/jars/commons-collections-3.2.2.jar,file:///work/server/apache-hive-2.3.9-bin/lib/antlr-runtime-3.5.2.jar,file:///work/server/apache-hive-2.3.9-bin/lib/jackson-core-2.6.5.jar,file:///work/server/apache-hive-2.3.9-bin/lib/jackson-annotations-2.6.0.jar,file:///work/server/apache-hive-2.3.9-bin/lib/jackson-databind-2.6.5.jar,file:///work/server/apache-hive-2.3.9-bin/lib/jackson-mapper-asl-1.9.13.jar,file:///work/server/apache-hive-2.3.9-bin/lib/jackson-core-asl-1.9.13.jar

启动 Byzer-lang & Notebook

在本机 ~/bin/ 目录创建 Byzer-lang 启动脚本


vi start-mlsql-3.0-latest-yarn-hive_2.3.9.sh

#!/bin/bash

set -e
set -o pipefail
# yarn-client 模式启动 Byzer-lang , 同时访问本机 Hive 2.3.9
# 适配 Hive 2.3.9 的 Byzer-lang
MLSQL_HOME=/work/server/mlsql-engine_3.0-2.3.0-SNAPSHOT-hive_2.3.9
# 适配 Hive 2.3.9 的 Spark
SPARK_HOME=/work/server/spark_3.1.1-hive_2.3.9

JARS=$(echo ${MLSQL_HOME}/libs/*.jar | tr ' ' ',')
MAIN_JAR=$(ls ${MLSQL_HOME}/libs|grep 'streamingpro-mlsql')
export DRIVER_MEMORY=${DRIVER_MEMORY:-1g}

echo "##############################"
echo "Run with spark : $SPARK_HOME"
echo "With DRIVER_MEMORY=${DRIVER_MEMORY:-1g}"
echo "JARS: ${JARS}"
echo "MAIN_JAR: ${MLSQL_HOME}/libs/${MAIN_JAR}"
echo "##############################"

nohup $SPARK_HOME/bin/spark-submit --class streaming.core.StreamingApp \
        --driver-memory "${DRIVER_MEMORY}" \
        --jars "${JARS}" \
        --master yarn \
        --deploy-mode client \
        --name mlsql \
        --conf "spark.executor.memory=1024m" \
        --conf "spark.executor.instances=1" \
        --conf "spark.sql.hive.thriftServer.singleSession=true" \
        --conf "spark.kryoserializer.buffer=256k" \
        --conf "spark.kryoserializer.buffer.max=64m" \
        --conf "spark.serializer=org.apache.spark.serializer.KryoSerializer" \
        --conf "spark.scheduler.mode=FAIR" \
        "${MLSQL_HOME}/libs/${MAIN_JAR}" \
        -streaming.name mlsql \
        -streaming.platform spark \
        -streaming.rest true \
        -streaming.driver.port 9005   \
        -streaming.spark.service true \
        -streaming.thrift false \
        -streaming.enableHiveSupport true \
        -streaming.datalake.path /work/data/mlsql \
> /work/logs/mlsql-3.0-2.3.0-SNAPSHOT-hive_2.3.9.log 2>&1 &

修改 Notebook 配置文件( notebook.properties)

notebook.mlsql.engine-url=http://localhost:9005

启动 Notebook, 再访问 localhost:9002,执行以下 Byzer-lang 代码,均成功。

select 2 as c1 as new_data;
-- 数据 覆盖写入表 zjc_11.zjc_0305
save overwrite new_data as hive.`zjc_11.zjc_0305`;
-- 读取数据
load hive.`zjc_11.zjc_0305` as hive_zjc_12;
上一篇 下一篇

猜你喜欢

热点阅读