从零开始来看一下Java泛型的设计

2017-04-09  本文已影响63人  横冲直撞666

引言

泛型是Java中一个非常重要的知识点,在Java集合类框架中泛型被广泛应用。本文我们将从零开始来看一下Java泛型的设计,将会涉及到通配符处理,以及让人苦恼的类型擦除。

泛型基础

泛型类

我们首先定义一个简单的Box类:

public class Box {

    private String object;

    public void set(String object) { this.object = object; }

    public String get() { return object; }

}

这是最常见的做法,这样做的一个坏处是Box里面现在只能装入String类型的元素,今后如果我们需要装入Integer等其他类型的元素,还必须要另外重写一个Box,代码得不到复用,使用泛型可以很好的解决这个问题。

public class Box<T> {

    // T stands for "Type"

    private T t;

    public void set(T t) { this.t = t; }

    public T get() { return t; }

}

这样我们的 Box 类便可以得到复用,我们可以将T替换成任何我们想要的类型:

Box<Integer> integerBox = new Box<Integer>();

Box<Double> doubleBox = new Box<Double>();

Box<String> stringBox = new Box<String>();

泛型方法

看完了泛型类,接下来我们来了解一下泛型方法。声明一个泛型方法很简单,只要在返回类型前面加上一个类似 <K, V> 的形式就行了:

public class Util {

    public static <K, V> boolean compare(Pair<K, V> p1, Pair<K, V> p2) {

        return p1.getKey().equals(p2.getKey()) &&

               p1.getValue().equals(p2.getValue());

    }

}

public class Pair<K, V> {

    private K key;

    private V value;

    public Pair(K key, V value) {

        this.key = key;

        this.value = value;

    }

    public void setKey(K key) { this.key = key; }

    public void setValue(V value) { this.value = value; }

    public K getKey()   { return key; }

    public V getValue() { return value; }

}

我们可以像下面这样去调用泛型方法:

Pair<Integer, String> p1 = new Pair<>(1, "apple");

Pair<Integer, String> p2 = new Pair<>(2, "pear");

boolean same = Util.<Integer, String>compare(p1, p2);

或者在Java1.7/1.8利用type inference,让Java自动推导出相应的类型参数:

Pair<Integer, String> p1 = new Pair<>(1, "apple");

Pair<Integer, String> p2 = new Pair<>(2, "pear");

boolean same = Util.compare(p1, p2);

边界符

现在我们要实现这样一个功能,查找一个泛型数组中大于某个特定元素的个数,我们可以这样实现:

public static <T> int countGreaterThan(T[] anArray, T elem) {

    int count = 0;

    for (T e : anArray)

        if (e > elem)  // compiler error

            ++count;

    return count;

}

但是这样很明显是错误的,因为除了 short, int, double, long, float, byte, char 等原始类型,其他的类并不一定能使用操作符 > ,所以编译器报错,那怎么解决这个问题呢?答案是使用边界符。

public interface Comparable<T> {

    public int compareTo(T o);

}

做一个类似于下面这样的声明,这样就等于告诉编译器类型参数 T 代表的都是实现了 Comparable 接口的类,这样等于告诉编译器它们都至少实现了 compareTo 方法。

public static <T extends Comparable<T>> int countGreaterThan(T[] anArray, T elem) {

    int count = 0;

    for (T e : anArray)

        if (e.compareTo(elem) > 0)

            ++count;

    return count;

}

通配符

在了解通配符之前,我们首先必须要澄清一个概念,还是借用我们上面定义的Box类,假设我们添加一个这样的方法:

public void boxTest(Box<Number> n) { /* ... */ }

那么现在 Box<Number> n 允许接受什么类型的参数?我们是否能够传入 Box<Integer> 或者 Box<Double> 呢?答案是否定的,虽然Integer和Double是Number的子类,但是在泛型中 Box<Integer> 或者 Box<Double> 与 Box<Number> 之间并没有任何的关系。这一点非常重要,接下来我们通过一个完整的例子来加深一下理解。

首先我们先定义几个简单的类,下面我们将用到它:

class Fruit {}

class Apple extends Fruit {}

class Orange extends Fruit {}

下面这个例子中,我们创建了一个泛型类 Reader ,然后在 f1() 中当我们尝试 Fruit f = fruitReader.readExact(apples); 编译器会报错,因为 List<Fruit> 与 List<Apple> 之间并没有任何的关系。

public class GenericReading {

    static List<Apple> apples = Arrays.asList(new Apple());

    static List<Fruit> fruit = Arrays.asList(new Fruit());

    static class Reader<T> {

        T readExact(List<T> list) {

            return list.get(0);

        }

    }

    static void f1() {

        Reader<Fruit> fruitReader = new Reader<Fruit>();

        // Errors: List<Fruit> cannot be applied to List<Apple>.

        // Fruit f = fruitReader.readExact(apples);

    }

    public static void main(String[] args) {

        f1();

    }

}

但是按照我们通常的思维习惯,Apple和Fruit之间肯定是存在联系,然而编译器却无法识别,那怎么在泛型代码中解决这个问题呢?我们可以通过使用通配符来解决这个问题:

static class CovariantReader<T> {

    T readCovariant(List<? extends T> list) {

        return list.get(0);

    }

}

static void f2() {

    CovariantReader<Fruit> fruitReader = new CovariantReader<Fruit>();

    Fruit f = fruitReader.readCovariant(fruit);

    Fruit a = fruitReader.readCovariant(apples);

}

public static void main(String[] args) {

    f2();

}

这样就相当与告诉编译器, fruitReader的readCovariant方法接受的参数只要是满足Fruit的子类就行(包括Fruit自身),这样子类和父类之间的关系也就关联上了。

PECS原则

上面我们看到了类似 <? extends T> 的用法,利用它我们可以从list里面get元素,那么我们可不可以往list里面add元素呢?我们来尝试一下:

public class GenericsAndCovariance {

    public static void main(String[] args) {

        // Wildcards allow covariance:

        List<? extends Fruit> flist = new ArrayList<Apple>();

        // Compile Error: can't add any type of object:

        // flist.add(new Apple())

        // flist.add(new Orange())

        // flist.add(new Fruit())

        // flist.add(new Object())

        flist.add(null); // Legal but uninteresting

        // We Know that it returns at least Fruit:

        Fruit f = flist.get(0);

    }

}

更多资料免费分享加群  120342833   验证回答   ZZ

答案是否定,Java编译器不允许我们这样做,为什么呢?对于这个问题我们不妨从编译器的角度去考虑。因为 List<? extends Fruit> flist 它自身可以有多种含义:

List<? extends Fruit> flist = new ArrayList<Fruit>();

List<? extends Fruit> flist = new ArrayList<Apple>();

List<? extends Fruit> flist = new ArrayList<Orange>();

当我们尝试add一个Apple的时候,flist可能指向 new ArrayList<Orange>() ;

当我们尝试add一个Orange的时候,flist可能指向 new ArrayList<Apple>() ;

当我们尝试add一个Fruit的时候,这个Fruit可以是任何类型的Fruit,而flist可能只想某种特定类型的Fruit,编译器无法识别所以会报错。

所以对于实现了 <? extends T> 的集合类只能将它视为Producer向外提供(get)元素,而不能作为Consumer来对外获取(add)元素。

如果我们要add元素应该怎么做呢?可以使用 <? super T> :

public class GenericWriting {

    static List<Apple> apples = new ArrayList<Apple>();

    static List<Fruit> fruit = new ArrayList<Fruit>();

    static <T> void writeExact(List<T> list, T item) {

        list.add(item);

    }

    static void f1() {

        writeExact(apples, new Apple());

        writeExact(fruit, new Apple());

    }

    static <T> void writeWithWildcard(List<? super T> list, T item) {

        list.add(item)

    }

    static void f2() {

        writeWithWildcard(apples, new Apple());

        writeWithWildcard(fruit, new Apple());

    }

    public static void main(String[] args) {

        f1(); f2();

    }

}

这样我们可以往容器里面添加元素了,但是使用super的坏处是以后不能get容器里面的元素了,原因很简单,我们继续从编译器的角度考虑这个问题,对于 List<? super Apple> list ,它可以有下面几种含义:

List<? super Apple> list = new ArrayList<Apple>();

List<? super Apple> list = new ArrayList<Fruit>();

List<? super Apple> list = new ArrayList<Object>();

当我们尝试通过list来get一个Apple的时候,可能会get得到一个Fruit,这个Fruit可以是Orange等其他类型的Fruit。

根据上面的例子,我们可以总结出一条规律,”Producer Extends, Consumer Super”:

  • “Producer Extends” – 如果你需要一个只读List,用它来produce T,那么使用 ? extends T 。

  • “Consumer Super” – 如果你需要一个只写List,用它来consume T,那么使用 ? super T 。

  • 如果需要同时读取以及写入,那么我们就不能使用通配符了。

    如何阅读过一些Java集合类的源码,可以发现通常我们会将两者结合起来一起用,比如像下面这样:

    public class Collections {

        public static <T> void copy(List<? super T> dest, List<? extends T> src) {

            for (int i=0; i<src.size(); i++)

                dest.set(i, src.get(i));

        }

    }

    类型擦除

  • 上一篇 下一篇

    猜你喜欢

    热点阅读