呆鸟的Python数据分析数据蛙数据分析基础学习

【SQL】销售数据练习

2019-11-27  本文已影响0人  Gaafung峰

前言

存在一份用户消费情况数据orderinfo,对其探讨以下问题:

  1. 统计不同月份的下单人数
  2. 统计用户三月份的回购率和复购率
  3. 统计男女用户的消费频次是否有差异
  4. 统计多次消费的用户,第一次和最后一次消费间隔是多少?
  5. 统计不同年龄段,用户的消费金额是否有差异?
    6.统计消费的二八法则,消费的top20%用户,贡献了多少额度
image.png

数据源观察

image.png

第一列 orderid 订单号(唯一)
第二列 userid 用户id(不唯一)
第三列 isPaid 是否已支付
第四列 price 价格
第五列 paidtime 下单时间

前期导入步骤

第一步 建表

create table orderinfo(
orderid    int   primary key not null ,
userid      int,
isPaid      varchar(10),
price        float,
paidTime   varchar(30));

第二步 导入数据

load data  infile"C:/Users/Administrator/Desktop/order_info_utf.csv" 
into table orderinfo fields terminated by ","; 

第三步 清洗日期格式

#a、先把时间格式标准化变成  1993-02-27 这样的
update orderinfo set paidtime=replace(paidtime,'/','-') where paidtime is not null;
#b、然后更新字符串为日期格式,然后才能使用日期函数进行操作,
update orderinfo set paidtime=str_to_date(paidtime,'%Y-%m-%d %H:%i') where paidtime is not null;
     #如果报 function str_to_datetime_value  错误,可以用 date_format
     select * from orderinfo where paidtime='\r' limit 10; 
     #来看一下是否包含了 \r(回车) 符号,
     #如果是包含了,则用下面语句再过滤掉 
update orderinfo set paidtime=str_to_date(paidtime,'%Y-%m-%d %H:%i') where paidtime is not null and paidtime <>'\r';

题目

  1. 统计不同月份的下单人数
select date_format(Paidtime,"%Y-%m"),count(distinct userid) from orderinfo 
    where isPaid = "已支付" group by month(PaidTime);
image.png
  1. 统计用户三月份的回购率和复购率

2.1 回购率:3月份买了 4月份也买的userid

select count(distinct userid) from orderinfo 
    where userid in (select distinct userid from orderinfo  where isPaid = "已支付" 
  and month(PaidTime) = 3) and month(Paidtime) = 4;

注:子查询是列子查询(一列多行),故用 in 判断userid是否在其中。

2.2 延伸 每个月的回购率如何

 select t1.m,count(t1.m),count(t2.m),count(t2.m)/count(t1.m) from 
    (select userid,date_format(paidtime,"%Y-%m-01") m from orderinfo where isPaid = "已支付" group by userid,date_format(paidtime,"%Y-%m-01")) t1
    left join 
    (select userid,date_format(paidtime,"%Y-%m-01") m from orderinfo where isPaid = "已支付" group by userid,date_format(paidtime,"%Y-%m-01")) t2
    on t1.userid = t2.userid and t2.m=date_add(t1.m,interval 1 month) group by t1.m;

利用相同表连接,然后进行月份筛选和userid限制。


image.png

2.3 复购率:3月份购买两次以上

select count(a),count(if(a>1,1,null)),count(if(a>1,1,null))/count(a) from 
    (select count(userid) a from orderinfo 
where isPaid = "已支付" and month(Paidtime) = 3 group by userid) t1;
image.png

按userid分组计数,超过2次及以上则为复购。

  1. 统计男女用户的消费频次是否有差异
select count(o.userid)/count(distinct o.userid),sex from orderinfo o 
    inner join userinfo u on o.userid = u.userid where sex in ("男","女") 
and isPaid = "已支付" group by sex;
image.png

按性别分组,求购买频次

  1. 统计多次消费的用户,第一次和最后一次消费间隔是多少?
select userid,count(userid),min(Paidtime) as firstpaidtime,max(Paidtime) as lastpaidtime,datediff(max(Paidtime),min(Paidtime)) as timediff 
    from orderinfo where isPaid = "已支付" group by userid having count(userid)>1;
image.png
 select avg(a) from (
select userid,count(userid),max(paidtime),min(paidtime),datediff(max(paidtime),min(paidtime)) a from orderinfo 
where ispaid="已支付" group by userid having count(userid)>=2) b;
image.png
  1. 统计不同年龄段,用户的消费金额是否有差异?
select 年龄段,sum(price) from orderinfo o inner join 
    (select *,2015-year(birth) as age,ceil((2015-year(birth))/10) as 年龄段 from userinfo 
    where birth >1900-01-02 having year(now())-year(birth)<100) t1
    on o.userid = t1.userid  where ispaid = "已支付" group by 年龄段;
image.png

6.统计消费的二八法则,消费的top20%用户,贡献了多少额度

select round(count(distinct userid)*0.2,0) from orderinfo where isPaid = "已支付";
image.png
select sum(a) from 
    (select *,sum(price) a from orderinfo where isPaid = "已支付" 
group by userid order by sum(price) desc
    limit 17130) b;
image.png

看下下面两条语句差异:

select count(userid)*0.2,sum(total) from (
select userid,sum(price) total from orderinfo 
where ispaid = "已支付" 
group by userid
order by sum(price) desc) t;
image.png

上述语句是将所有的消费金额进行统计了。

select count(userid),sum(total) from (
select userid,sum(price) total from orderinfo 
where ispaid = "已支付" 
group by userid
order by sum(price) desc
limit 17129) t;
image.png
上一篇下一篇

猜你喜欢

热点阅读