Block原理学习笔记
什么是Block?
In programming languages, a closure is a function or reference to a function together with a referencing environment—a table storing a reference to each of the non-local variables (also called free variables or upvalues) of that function.
Block是一个函数(或指向函数的指针),再加上该函数执行的外部的上下文变量。或者用一句话介绍Block,带有自动变量(局部变量)的匿名函数。
Block的数据结构定义如下:
struct Block_layout {
void *isa;
int flags;
int reserved;
void (*invoke)(void *, ...);
struct Block_descriptor *descriptor;
/* Imported variables. */
};
struct Block_descriptor {
unsigned long int reserved;
unsigned long int size;
void (*copy)(void *dst, void *src);
void (*dispose)(void *);
};
Block结构体解析:
- isa 指针,所有对象都有该指针,用于实现对象相关的功能。
- flags,用于按 bit 位表示一些 block 的附加信息。
- reserved,保留变量。
- invoke,函数指针,指向具体的 block 实现的函数调用地址。
- descriptor, 表示该 block 的附加描述信息,主要是 size 大小,以及 copy 和 dispose 函数的指针。
- variables,capture 过来的变量,block 能够访问它外部的局部变量,就是因为将这些变量(或变量的地址)复制到了结构体中。
Blcok捕获外部变量的实质
测试代码
#import <Foundation/Foundation.h>
int global_i = 1;
static int static_global_j = 2;
int main(int argc, const char * argv[]) {
static int static_k = 3;
int val = 4;
void (^myBlock)(void) = ^{
global_i ++;
static_global_j ++;
static_k ++;
NSLog(@"Block中 global_i = %d,static_global_j = %d,static_k = %d,val = %d",global_i,static_global_j,static_k,val);
};
global_i ++;
static_global_j ++;
static_k ++;
val ++;
NSLog(@"Block外 global_i = %d,static_global_j = %d,static_k = %d,val = %d",global_i,static_global_j,static_k,val);
myBlock();
return 0;
}
运行结果
Block 外 global_i = 2,static_global_j = 3,static_k = 4,val = 5
Block 中 global_i = 3,static_global_j = 4,static_k = 5,val = 4
使用clang将main.m文件转换为main.cpp,代码如下
int global_i = 1;
static int static_global_j = 2;
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int *static_k;
int val;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_static_k, int _val, int flags=0) : static_k(_static_k), val(_val) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
int *static_k = __cself->static_k; // bound by copy
int val = __cself->val; // bound by copy
global_i ++;
static_global_j ++;
(*static_k) ++;
NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_6fe658_mi_0,global_i,static_global_j,(*static_k),val);
}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
static int static_k = 3;
int val = 4;
void (*myBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, &static_k, val));
global_i ++;
static_global_j ++;
static_k ++;
val ++;
NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_6fe658_mi_1,global_i,static_global_j,static_k,val);
((void (*)(__block_impl *))((__block_impl *)myBlock)->FuncPtr)((__block_impl *)myBlock);
return 0;
}
全局变量global_i和静态全局变量static_global_j因为是全局的,作用域广,所以能够被Block捕获并修改值。
局部变量和静态变量被Block从外面捕获进来,在__main_block_impl_0中可以看到局部变量val和静态变量static_k,成为__main_block_impl_0这个结构构的成员变量了。
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_static_k, int _val, int flags=0) : static_k(_static_k), val(_val)
在这个构造函数中,局部变量和静态变量被捕获为成员变量追加到构造函数中。
到此,_main_block_impl_0结构体就是这样把自动变量捕获进来的。也就是说,在执行Block语法的时候,Block语法表达式所使用的自动变量的值是被保存进了Block的结构体实例中,也就是Block自身中。
如果Block外面还有很多局部变量,静态变量等等,这些变量在Block里面并不会被使用到。那么这些变量并不会被Block捕获进来,也就是说并不会在构造函数里面传入它们的值。Block捕获外部变量仅仅只捕获Block闭包里面会用到的值,其他用不到的值,它并不会去捕获。
局部变量val虽然被捕获进来了,但是是用 __cself->val来访问的。Block仅仅捕获了val的值,并没有捕获val的内存地址。所以在__main_block_func_0这个函数中即使我们重写这个自动变量val的值,依旧没法去改变Block外面自动变量val的值。
小结: 局部变量是以值传递方式传递到Block的构造函数里面去的。Block只捕获Block中会用到的变量。由于只捕获了自动变量的值,并非内存地址,所以Block内部不能改变自动变量的值。Block捕获的外部变量可以改变值的是静态变量,静态全局变量,全局变量。
__block实现原理
#import <Foundation/Foundation.h>
int main(int argc, const char * argv[]) {
__block int i = 0;
void (^myBlock)(void) = ^{
i ++;
NSLog(@"%d",i);
};
myBlock();
return 0;
}
把上述代码使用clang转换成源码
struct __Block_byref_i_0 {
void *__isa;
__Block_byref_i_0 *__forwarding;
int __flags;
int __size;
int i;
};
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__Block_byref_i_0 *i; // by ref
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_i_0 *_i, int flags=0) : i(_i->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
__Block_byref_i_0 *i = __cself->i; // bound by ref
(i->__forwarding->i) ++;
NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_3b0837_mi_0,(i->__forwarding->i));
}
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->i, (void*)src->i, 8/*BLOCK_FIELD_IS_BYREF*/);}
static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->i, 8/*BLOCK_FIELD_IS_BYREF*/);}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main(int argc, const char * argv[]) {
__attribute__((__blocks__(byref))) __Block_byref_i_0 i = {(void*)0,(__Block_byref_i_0 *)&i, 0, sizeof(__Block_byref_i_0), 0};
void (*myBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_i_0 *)&i, 570425344));
((void (*)(__block_impl *))((__block_impl *)myBlock)->FuncPtr)((__block_impl *)myBlock);
return 0;
}
从源码我们能发现,带有 __block的变量也被转化成了一个结构体__Block_byref_i_0,这个结构体有5个成员变量。第一个是isa指针,第二个是指向自身类型的__forwarding指针,第三个是一个标记flag,第四个是它的大小,第五个是变量值,名字和变量名同名。
isa的存储域有三种:
• _NSConcreteStackBlock 保存在栈中的block,出栈时会被销毁
• _NSConcreteGlobalBlock 全局的静态block,不会访问任何外部变量
• _NSConcreteMallocBlock 保存在堆中的block,当引用计数为0时会被销毁
__forwarding指针这里的作用就是针对堆的Block,把原来__forwarding指针指向自己,换成指向_NSConcreteMallocBlock上复制之后的__block自己。然后堆上的变量的__forwarding再指向自己。这样不管__block怎么复制到堆上,还是在栈上,都可以通过(i->__forwarding->i)来访问到变量值。
参考资料:
http://blog.devtang.com/2013/07/28/a-look-inside-blocks/
https://gold.xitu.io/post/57ccab0ba22b9d006ba26de1