CMU Neural Nets for NLP

2019-03-18  本文已影响0人  想加颜表情的tsi

1.

Before class: read material on the topic

⭐️About code: GitHub: neubig/nn4nlp-code

Assignment1: Text Classifier/Questionnaire

Assignment2: SOTA Survey

Assignment3: SOTA Re-implementation

Assignment4: Final Project

Bags of words:把一些词放进function,相加结果为score

每个词向量都有feature,feature combination(如feature1 + feature5 = positive)

体现为Computation graph(均可转化为图)

(简)

图中的结点X可以是{tensor, matrix, vector, scalar} value

左上结点表示一个function,每条入边传入一个参数(边的起始顶点)

一个例子(简)

算法:

Forward propagation正向传播

Back-propagation (a loss function, a value we want to minimize

parameter update

神经网络框架:静态:theano, caffe, mxnet, tensorflow

      动态:aynet,chainer, pytorch

⭐️基本过程

gitnub:第一个项目

把word都先转化成整数,然后用向量和矩阵(对应下图)

而对于continous bag of words,修改#define the model 部分即可(下面的其它代码)

class plan:

TOPIC 1:Model of words

TOPIC 2: Model of sentences

TOPIC 3: Implementing, Debugging, interpreting

TOPIC 4: sequence-to-sequence models

TOPIC 5: Structured Prediction Models

等等

2.

Language models:can help score sentences ,generate sentences

Problem1: similar words  ->class based language models

Problem2: intervening words  -> skip-gram lm

Problem3: Long-distance dependencies  ->cache

Softmax:

A computation graph view

Loss function: a measure of how bad our predictions are

Paramenter update: 为了减少损失,而进行平移之类的

实战:02-lm

上一篇 下一篇

猜你喜欢

热点阅读