计算机网络考点

2018-09-05  本文已影响0人  铛铛铛铛铛_9003

1.Http和Https的区别

Http协议运行在TCP之上,明文传输,客户端与服务器端都无法验证对方的身份;Https是身披SSL(Secure Socket Layer)外壳的Http,运行于SSL上,SSL运行于TCP之上,是添加了加密和认证机制的HTTP。二者之间存在如下不同:

端口不同:Http与Http使用不同的连接方式,用的端口也不一样,前者是80,后者是443;

资源消耗:和HTTP通信相比,Https通信会由于加减密处理消耗更多的CPU和内存资源;

开销:Https通信需要证书,而证书一般需要向认证机构购买;

Https的加密机制是一种共享密钥加密和公开密钥加密并用的混合加密机制。

2.三次握手与四次挥手

(1). 三次握手(我要和你建立链接,你真的要和我建立链接么,我真的要和你建立链接,成功):

第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。

第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。

第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。

(2). 四次挥手(我要和你断开链接;好的,断吧。我也要和你断开链接;好的,断吧):

第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。

第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。此时TCP链接处于半关闭状态,即客户端已经没有要发送的数据了,但服务端若发送数据,则客户端仍要接收。

第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。

第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。

3.客户端不断进行请求链接会怎样?DDos(Distributed Denial of Service)攻击

1)、DDos 攻击

客户端向服务端发送请求链接数据包

服务端向客户端发送确认数据包

客户端不向服务端发送确认数据包,服务器一直等待来自客户端的确认

2)、DDos 预防 ( 没有彻底根治的办法,除非不使用TCP )

限制同时打开SYN半链接的数目

缩短SYN半链接的Time out 时间

关闭不必要的服务

4.TCP与UDP的区别

TCP (Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议,它们之间的区别包括:

TCP是面向连接的,UDP是无连接的;

TCP是可靠的,UDP是不可靠的;

TCP只支持点对点通信,UDP支持一对一、一对多、多对一、多对多的通信模式;

TCP是面向字节流的,UDP是面向报文的;

TCP有拥塞控制机制;UDP没有拥塞控制,适合媒体通信;

TCP首部开销(20个字节)比UDP的首部开销(8个字节)要大;

5.从输入网址到获得页面的过程

  (1). 浏览器查询DNS,获取域名对应的IP地址:具体过程包括浏览器搜索自身的DNS缓存、搜索操作系统的DNS缓存、读取本地的Host文件和向本地DNS服务器进行查询等。对于向本地DNS服务器进行查询,如果要查询的域名包含在本地配置区域资源中,则返回解析结果给客户机,完成域名解析(此解析具有权威性);如果要查询的域名不由本地DNS服务器区域解析,但该服务器已缓存了此网址映射关系,则调用这个IP地址映射,完成域名解析(此解析不具有权威性)。如果本地域名服务器并未缓存该网址映射关系,那么将根据其设置发起递归查询或者迭代查询;

  (2). 浏览器获得域名对应的IP地址以后,浏览器向服务器请求建立链接,发起三次握手;

  (3). TCP/IP链接建立起来后,浏览器向服务器发送HTTP请求;

  (4). 服务器接收到这个请求,并根据路径参数映射到特定的请求处理器进行处理,并将处理结果及相应的视图返回给浏览器;

  (5). 浏览器解析并渲染视图,若遇到对js文件、css文件及图片等静态资源的引用,则重复上述步骤并向服务器请求这些资源;

  (6). 浏览器根据其请求到的资源、数据渲染页面,最终向用户呈现一个完整的页面。

6.Session、Cookie

Cookie和Session都是客户端与服务器之间保持状态的解决方案,具体来说,cookie机制采用的是在客户端保持状态的方案,而session机制采用的是在服务器端保持状态的方案。

(1). Cookie及其相关API

  Cookie实际上是一小段的文本信息。客户端请求服务器,如果服务器需要记录该用户状态,就使用response向客户端浏览器颁发一个Cookie,而客户端浏览器会把Cookie保存起来。当浏览器再请求该网站时,浏览器把请求的网址连同该Cookie一同提交给服务器,服务器检查该Cookie,以此来辨认用户状态。服务器还可以根据需要修改Cookie的内容。

(2). Session及其相关API

同样地,会话状态也可以保存在服务器端。客户端请求服务器,如果服务器记录该用户状态,就获取Session来保存状态,这时,如果服务器已经为此客户端创建过session,服务器就按照sessionid把这个session检索出来使用;如果客户端请求不包含sessionid,则为此客户端创建一个session并且生成一个与此session相关联的sessionid,并将这个sessionid在本次响应中返回给客户端保存。保存这个sessionid的方式可以采用 cookie机制 ,这样在交互过程中浏览器可以自动的按照规则把这个标识发挥给服务器;若浏览器禁用Cookie的话,可以通过URL重写机制将sessionid传回服务器。

(3). Session 与 Cookie 的对比

实现机制:Session的实现常常依赖于Cookie机制,通过Cookie机制回传SessionID;

大小限制:Cookie有大小限制并且浏览器对每个站点也有cookie的个数限制,Session没有大小限制,理论上只与服务器的内存大小有关;

安全性:Cookie存在安全隐患,通过拦截或本地文件找得到cookie后可以进行攻击,而Session由于保存在服务器端,相对更加安全;

服务器资源消耗:Session是保存在服务器端上会存在一段时间才会消失,如果session过多会增加服务器的压力。

7.OSI网络体系结构与TCP/IP协议模型

1). 物理层

  参考模型的最低层,也是OSI模型的第一层,实现了相邻计算机节点之间比特流的透明传送,并尽可能地屏蔽掉具体传输介质和物理设备的差异,使其上层(数据链路层)不必关心网络的具体传输介质。

2). 数据链路层(data link layer)

  接收来自物理层的位流形式的数据,并封装成帧,传送到上一层;同样,也将来自上层的数据帧,拆装为位流形式的数据转发到物理层。这一层在物理层提供的比特流的基础上,通过差错控制、流量控制方法,使有差错的物理线路变为无差错的数据链路,即提供可靠的通过物理介质传输数据的方法。

3). 网络层

  将网络地址翻译成对应的物理地址,并通过路由选择算法为分组通过通信子网选择最适当的路径。

4). 传输层(transport layer)

  在源端与目的端之间提供可靠的透明数据传输,使上层服务用户不必关系通信子网的实现细节。在协议栈中,传输层位于网络层之上,传输层协议为不同主机上运行的进程提供逻辑通信,而网络层协议为不同主机提供逻辑通信,如下图所示。

5). 会话层(Session Layer)

  会话层是OSI模型的第五层,是用户应用程序和网络之间的接口,负责在网络中的两节点之间建立、维持和终止通信。

6). 表示层(Presentation Layer):数据的编码,压缩和解压缩,数据的加密和解密

  表示层是OSI模型的第六层,它对来自应用层的命令和数据进行解释,以确保一个系统的应用层所发送的信息可以被另一个系统的应用层读取。

7). 应用层(Application layer):为用户的应用进程提供网络通信服务

8.TCP和UDP分别对应的常见应用层协议

1). TCP对应的应用层协议

FTP:定义了文件传输协议,使用21端口。常说某某计算机开了FTP服务便是启动了文件传输服务。下载文件,上传主页,都要用到FTP服务。

Telnet:它是一种用于远程登陆的端口,用户可以以自己的身份远程连接到计算机上,通过这种端口可以提供一种基于DOS模式下的通信服务。如以前的BBS是-纯字符界面的,支持BBS的服务器将23端口打开,对外提供服务。

SMTP:定义了简单邮件传送协议,现在很多邮件服务器都用的是这个协议,用于发送邮件。如常见的免费邮件服务中用的就是这个邮件服务端口,所以在电子邮件设置-中常看到有这么SMTP端口设置这个栏,服务器开放的是25号端口。

POP3:它是和SMTP对应,POP3用于接收邮件。通常情况下,POP3协议所用的是110端口。也是说,只要你有相应的使用POP3协议的程序(例如Fo-xmail或Outlook),就可以不以Web方式登陆进邮箱界面,直接用邮件程序就可以收到邮件(如是163邮箱就没有必要先进入网易网站,再进入自己的邮-箱来收信)。

HTTP:从Web服务器传输超文本到本地浏览器的传送协议。

2). UDP对应的应用层协议

DNS:用于域名解析服务,将域名地址转换为IP地址。DNS用的是53号端口。

SNMP:简单网络管理协议,使用161号端口,是用来管理网络设备的。由于网络设备很多,无连接的服务就体现出其优势。

TFTP(Trival File Transfer Protocal):简单文件传输协议,该协议在熟知端口69上使用UDP服务。

8.网络层的ARP协议工作原理

网络层的ARP协议完成了IP地址与物理地址的映射。首先,每台主机都会在自己的ARP缓冲区中建立一个ARP列表,以表示IP地址和MAC地址的对应关系。当源主机需要将一个数据包要发送到目的主机时,会首先检查自己ARP列表中是否存在该IP地址对应的MAC地址:如果有,就直接将数据包发送到这个MAC地址;如果没有,就向本地网段发起一个ARP请求的广播包,查询此目的主机对应的MAC地址。此ARP请求数据包里包括源主机的IP地址、硬件地址、以及目的主机的IP地址。网络中所有的主机收到这个ARP请求后,会检查数据包中的目的IP是否和自己的IP地址一致。如果不相同就忽略此数据包;如果相同,该主机首先将发送端的MAC地址和IP地址添加到自己的ARP列表中,如果ARP表中已经存在该IP的信息,则将其覆盖,然后给源主机发送一个ARP响应数据包,告诉对方自己是它需要查找的MAC地址;源主机收到这个ARP响应数据包后,将得到的目的主机的IP地址和MAC地址添加到自己的ARP列表中,并利用此信息开始数据的传输。如果源主机一直没有收到ARP响应数据包,表示ARP查询失败。

9.常见状态码及原因短语

1×× : 请求处理中,请求已被接受,正在处理

2×× : 请求成功,请求被成功处理

200 OK

3×× : 重定向,要完成请求必须进行进一步处理

301 : 永久性转移

302 :暂时性转移

304 : 已缓存

4×× : 客户端错误,请求不合法

400:Bad Request,请求有语法问题

403:拒绝请求

404:客户端所访问的页面不存在

5×× : 服务器端错误,服务器不能处理合法请求

500 :服务器内部错误

503 : 服务不可用,稍等

10.常见的路由选择协议,以及它们的区别

常见的路由选择协议有:RIP协议、OSPF协议。

RIP协议:底层是贝尔曼福特算法,它选择路由的度量标准(metric)是跳数,最大跳数是15跳,如果大于15跳,它就会丢弃数据包。

OSPF协议:底层是迪杰斯特拉算法,是链路状态路由选择协议,它选择路由的度量标准是带宽,延迟。

上一篇下一篇

猜你喜欢

热点阅读