读书

SpringBoot线程池

2022-05-23  本文已影响0人  Java编程日记

1、遇到的场景
提高一下插入表的性能优化,两张表,先插旧的表,紧接着插新的表,若是一万多条数据就有点慢了
2、使用步骤
用Spring提供的对 ThreadPoolExecutor 封装的线程池 ThreadPoolTaskExecutor ,直接使用注解启用
配置
@Configuration
@EnableAsync
public class ExecutorConfig {

private static final Logger logger = LoggerFactory.getLogger(ExecutorConfig.class);

@Value("${async.executor.thread.core_pool_size}")
private int corePoolSize;
@Value("${async.executor.thread.max_pool_size}")
private int maxPoolSize;
@Value("${async.executor.thread.queue_capacity}")
private int queueCapacity;
@Value("${async.executor.thread.name.prefix}")
private String namePrefix;

@Bean(name = "asyncServiceExecutor")
public Executor asyncServiceExecutor() {
    logger.info("start asyncServiceExecutor");
    ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
    // 配置核心线程数
    executor.setCorePoolSize(corePoolSize);
    // 配置最大线程数
    executor.setMaxPoolSize(maxPoolSize);
    // 配置队列大小
    executor.setQueueCapacity(queueCapacity);
    // 配置线程池中的线程的名称前缀
    executor.setThreadNamePrefix(namePrefix);

    // rejection-policy:当pool已经达到max size的时候,如何处理新任务
    // CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行
    executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
    //执行初始化
    executor.initialize();
    return executor;
}

}
@Value 取值配置是在 application.properties 中的

异步线程配置

配置核心线程数

async.executor.thread.core_pool_size = 5

配置最大线程数

async.executor.thread.max_pool_size = 5

配置队列大小

async.executor.thread.queue_capacity = 99999

配置线程池中的线程的名称前缀

async.executor.thread.name.prefix = async-service-
Demo测试
Service接口
public interface AsyncService {

/**
 * 执行异步任务
 * 可以根据需求,自己加参数拟定
 */
void executeAsync();

}
Service实现类
@Service
public class AsyncServiceImpl implements AsyncService {

private static final Logger logger = LoggerFactory.getLogger(AsyncServiceImpl.class);

@Override
@Async("asyncServiceExecutor")
public void executeAsync() {
    logger.info("start executeAsync");

    System.out.println("异步线程要做的事情");
    System.out.println("可以在这里执行批量插入等耗时的事情");

    logger.info("end executeAsync");
}

}
在Controller层注入刚刚的Service即可
@Autowired
private AsyncService asyncService;

@GetMapping("/async")
public void async(){
asyncService.executeAsync();
}
使用测试工具测试即可看到相应的打印结果
3、摸索一下
-** 弄清楚线程池当时的情况,有多少线程在执行,多少在队列中等待?**

创建一个 ThreadPoolTaskExecutor 的子类,在每次提交线程的时候都将当前线程池的运行状况打印出来
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.util.concurrent.ListenableFuture;

import java.util.concurrent.Callable;
import java.util.concurrent.Future;
import java.util.concurrent.ThreadPoolExecutor;

public class VisiableThreadPoolTaskExecutor extends ThreadPoolTaskExecutor {

private static final Logger logger = LoggerFactory.getLogger(VisiableThreadPoolTaskExecutor.class);

private void showThreadPoolInfo(String prefix) {
    ThreadPoolExecutor threadPoolExecutor = getThreadPoolExecutor();

    if (null == threadPoolExecutor) {
        return;
    }

    logger.info("{}, {},taskCount [{}], completedTaskCount [{}], activeCount [{}], queueSize [{}]",
            this.getThreadNamePrefix(),
            prefix,
            threadPoolExecutor.getTaskCount(),
            threadPoolExecutor.getCompletedTaskCount(),
            threadPoolExecutor.getActiveCount(),
            threadPoolExecutor.getQueue().size());
}

@Override
public void execute(Runnable task) {
    showThreadPoolInfo("1. do execute");
    super.execute(task);
}

@Override
public void execute(Runnable task, long startTimeout) {
    showThreadPoolInfo("2. do execute");
    super.execute(task, startTimeout);
}

@Override
public Future<?> submit(Runnable task) {
    showThreadPoolInfo("1. do submit");
    return super.submit(task);
}

@Override
public <T> Future<T> submit(Callable<T> task) {
    showThreadPoolInfo("2. do submit");
    return super.submit(task);
}

@Override
public ListenableFuture<?> submitListenable(Runnable task) {
    showThreadPoolInfo("1. do submitListenable");
    return super.submitListenable(task);
}

@Override
public <T> ListenableFuture<T> submitListenable(Callable<T> task) {
    showThreadPoolInfo("2. do submitListenable");
    return super.submitListenable(task);
}

}
进过测试发现: showThreadPoolInfo 方法中将任务总数、已完成数、活跃线程数,队列大小都打印出来了,然后Override了父类的execute、submit等方法,在里面调用showThreadPoolInfo方法,这样每次有任务被提交到线程池的时候,都会将当前线程池的基本情况打印到日志中

现在修改 ExecutorConfig.java 的 asyncServiceExecutor 方法,将 ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor() 改为 ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor()

@Bean(name = "asyncServiceExecutor")
public Executor asyncServiceExecutor() {
logger.info("start asyncServiceExecutor");
// 在这里进行修改
ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor();
// 配置核心线程数
executor.setCorePoolSize(corePoolSize);
// 配置最大线程数
executor.setMaxPoolSize(maxPoolSize);
// 配置队列大小
executor.setQueueCapacity(queueCapacity);
// 配置线程池中的线程的名称前缀
executor.setThreadNamePrefix(namePrefix);

    // rejection-policy:当pool已经达到max size的时候,如何处理新任务
    // CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行
    executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
    //执行初始化
    executor.initialize();
    return executor;
}

经最后测试得到的结果:提交任务到线程池的时候,调用的是 submit(Callable task) 这个方法,当前已经提交了3个任务,完成了3个,当前有0个线程在处理任务,还剩0个任务在队列中等待

上一篇下一篇

猜你喜欢

热点阅读