讨厌算法的程序员数据结构和算法分析架构算法设计模式和编程理论

讨厌算法的程序员 5 - 合并算法

2017-05-26  本文已影响70人  袁承兴

讨厌算法的程序员系列入口

本篇介绍的“合并”算法,是为后面学习“归并排序”的一个准备。合并算法是归并排序中的一个子算法,请注意两者之间的关系和差异。

之所以把它独立成一篇,一方面是一旦了解了它再理解归并排序就会简单很多,另一方面是其本身就具有独立性,可以解决很多常见问题,并不非得寄宿在归并排序里面。

合并算法,就是将两个已经各自排好序的序列,合并成一个排好序的大序列的方法

经典应用

两摞扑克牌

《算法导论》里面给出的例子就很好理解。还是拿扑克牌来说事:桌上有两摞牌,面朝上,每摞都已经按照从小到大排好序了。那么如何把它们合并成一摞并排好序呢?

日常生活中其实还有很多类似的应用。比如校园里学生按身高由低到高排队,偶尔会遇到两队合一队的情况,要求合并后仍然按照由低到高的顺序。

合并算法就是解决此类问题的最佳方法。以扑克牌为例,其基本步骤是:

假设最坏情况是两摞牌要比到各自最后一张,此时算法时间复杂度是T(n) = Θ(n),这是因为整个算法最多只要遍历一遍。

伪码

接下来,用伪码实现上面的思想,但有两个额外的变化:

定义算法的名字为MERGE,伪码如下:

MERGE(A, p, q, r)
1  n1 = q - p + 1
2  n2 = r - q
3  let L[1 ‥ n1+1] and R[1 ‥ n2+1] be new arrays
4  for i = 1 to n1
5    L[i] = A[p+i-1]
6  for j = 1 to n2
7    R[j] = A[q+j]
8  L[n1+1] = ∞
9  R[n2+1] = ∞
10 i = 1
11 j = 1
12 for k = p to r
13   if L[i] ≤ R[j]
14     A[k] = L[i]
15     i = i + 1
16   else A[k] = R[j]
17     j = j + 1 

正确性证明

证明算法的正确性中提到:只要证明在初始、保持、和终止阶段循环不变式都成立,从而可以通过终止时的不变式推断出算法是正确的。

代码中的12~17行是唯一的循环,循环不变式是什么呢?这里我们令输出A[p ‥ k-1]作为循环不变式,迭代的任何过程中随k的增加该数组总是按从小到大的顺序包含原A[p ‥ r]中最小的元素,有如下证明:

时间复杂度

前面提到过MERGE的时间复杂度是Θ(n),其中n = r - p + 1。再快速算下:

Java实现

public class MergeSort {
public static void mergeInASC(int[] numbers, int p, int q, int r) throws Exception {
    if(numbers.length < 2 || p > q || q >= r)
        throw new Exception("Para error.");

    int n1 = q - p + 1;
    int n2 = r - q;

    int[] L = new int[n1 + 1];
    int[] R = new int[n2 + 1];

    for(int i  = 0; i < n1; i++){
        L[i] = numbers[p + i];
    }
    for(int j = 0; j < n2; j++){
        R[j] = numbers[q + 1 + j];
    }

    L[n1] = Integer.MAX_VALUE;
    R[n2] = Integer.MAX_VALUE;

    int i = 0;
    int j = 0;
    for(int k = p; k <= r; k++){
        if(L[i] > R[j]){
            numbers[k] = R[j];
            j++;
        }
        else{
            numbers[k] = L[i];
            i++;
        }
    }
}
}

MergeSort.java下载

上一篇 4 时间复杂度

下一篇 6 归并排序


共享协议:署名-非商业性使用-禁止演绎(CC BY-NC-ND 3.0 CN)
转载请注明:作者黑猿大叔(简书)

上一篇 下一篇

猜你喜欢

热点阅读