PAT 甲级 刷题日记|A 1064 Complete Bina
单词积累
complete 完整的 完全的
exception 例外 异议
题目
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
结尾无空行
Sample Output:
6 3 8 1 5 7 9 0 2 4
结尾无空行
思路
利用完全二叉排序树的性质,找到根节点 左节点 右节点,来完成建树
建树完成后,利用层次遍历即可得到最终结果
看了别人的题解之后,感觉自己处理地麻烦太多了。更优的思路是利用排序,得到二叉树的中序序列(二叉排序树的性质:中序遍历结果就是数字的升序序列),然后再通过中序序列建树,树的存储序列即为层次序列的值(完全二叉树的性质:从1开始编号的完全二叉树,i节点的左孩子编号为2i,右孩子编号为2i+1),非常巧妙
代码1
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1000 + 2;
int num[maxn];
vector<int> res;
struct node{
int data;
node* leftchild;
node* rightchild;
node(int d): data(d), leftchild(NULL), rightchild(NULL){
}
};
node* create(int a, int b) {
if (a == b) {
node* anode = new node(num[a]);
return anode;
}
if (a > b) return NULL;
int all = b - a + 1; // 处理的节点数
int height = floor(log(all + 1) / log(2)); // 满层的高度
int now = pow(2, height) - 1; // 满层的节点数
int left = (now - 1) / 2;
int right = left;
left += a;
int next = pow(2, height); //下一层的节点数
if ((all - now) <= next / 2) left += (all - now);
else {
left += next / 2;
right += all - now - next/2;
}
node* root = new node(num[left]);
root->leftchild = create(a, left - 1);
root->rightchild = create(left + 1, b);
return root;
}
void level(node* root) {
queue<node*> mq;
mq.push(root);
while(!mq.empty()) {
node* now = mq.front();
mq.pop();
res.push_back(now->data);
if(now->leftchild != NULL) mq.push(now->leftchild);
if(now->rightchild != NULL) mq.push(now->rightchild);
}
return;
}
int main() {
int len;
cin>>len;
for (int i = 0; i< len; i++) {
cin>>num[i];
}
sort(num, num+len);
node* root = create(0,len-1);
level(root);
for (int i = 0; i < len; i++) {
cout<<res[i];
if (i != len - 1) cout<<" ";
}
}
代码2
#include <bits/stdc++.h>
using namespace std;
const int maxn = 10000;
int len;
int index = 0;
int num[maxn];
int res[maxn];
void Inorder(int root) {
if (root > len) return;
Inorder(root * 2);
res[root] = num[index++];
Inorder(root * 2 + 1);
}
int main() {
cin>>len;
for (int i = 0; i < len; i++) {
cin>>num[i];
}
sort(num, num + len);
Inorder(1);
for (int i = 1; i <= len; i++) {
cout<<res[i];
if (i != len) cout<<" ";
}
}