小白生信入门看场电影程序员

RNA-seq workshop-Day 1

2018-06-12  本文已影响27人  猪猪头看世界
Day 1.jpg

本周的Data Workshop又开始了,这次将围绕着以R语言为工具,进行RNA-seq和ScRNA-seq的分析。今天主要回顾了R introduction的内容,温习了接下来将要用到的一些commands,然后对RNA-seq的流程进行了系列介绍。

1. Introduction to R (Dr. Rocio T Martinez-Nunez)

1.1 Objects

1.2 Commenting your code

1.3 system(): communicates with the shell in your computer

system("ls -F/")

1.4 cmd as a group of commands

cmd <- paste("gunzip -c", fastq.files, "| head")
cmd  # to view cmds & runs
system(cmd[1]) # Run the first command of cmd

1.5 Some R tips

1.5.1 ask for help
# in R: ? + function
?system
#in shell : (-h)
system("trim_galore -h")
1.5.2 Tab: look for the list of word match in R.
1.5.3 Arrow keys: up row-the last thing you type in.
1.5.4 Pines %>% in R or | in shell
install. packages("tidyverse")  # install packages
library("tidyverse")  # load packages
download.file("website", "path and name. csv")  # download file
surveys <- read_csv("path and name. csv")  # open file
str( surveys)  # inspect the data: an overview of an object's structure and its elements
dim( surveys)  # size: row numbers and column numbers
head( surveys)  # check the top(first six lines) of the data frame
surveys_new <- surveys %>%  # pipes
filter(weight < 5) %>%  # filter
select(species_id, sex, weight)  # select
str(surveys_new)  # inspect the data: an overview of an object's structure and its elements
dim(surveys_new)  # size: row numbers and column numbers
head(surveys_new)  # check the top(first six lines) of the data frame
1.6 Some R functions we will be using:
 # create command cmd that includes trim_galore and its flags with the object we apply it to   
cmd <- paste("trim_galore --length 21 --output_dir trimgalore, fastq.files)  
# run only the first line of the commands
system(cmd[1])
# create vector with the power of 1, 2 and 3:
sapply(1:3, function(x) x^2)
#[1] 1, 4, 9
1.7 Loops: vectorization & sapply
for (year in c(2010, 2011, 2012, 2013, 2014, 2015)){
      print(paste("The year is", year))
}

2. Introduction to RNA-seq data analysis (Dr. Alessandra Vigilante)

2.1 What is NGS
2.2 Eight stages in RNA-seq Analysis
2.2.1 Define the question of interest (RNA-seq data can tell us)
2.2.2 Get the data(data formats)
2.2.3 Clean the data(quality control)
2.2.4 Map the data
2.2.5 Explore the data
2.2.6 Fit statistical models
2.2.7 Make your analysis reproducible
RNA-seq workflow in the workshop

3. Learning experience

本次笔记借鉴了KCL Workshop的学习资料及课件,请勿转载,如需引用请注明。

上一篇下一篇

猜你喜欢

热点阅读