【集合框架】红黑树
2018-02-24 本文已影响2人
小呀么小黄鸡
红黑树与TreeMap
基本性质
- 每个节点都只能是红色或者黑色
- 根节点是黑色
- 每个叶节点(NIL节点,空节点)是黑色的。
- 如果一个结点是红的,则它两个子节点都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。
- 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
关键性质
从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这棵树大致上是平衡(左右子树的深度差不多)的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。所以红黑树它是复杂而高效的,其检索效率O(log n)。
三大基本操作:左旋、右旋、着色。
几个重要的属性:
//比较器,因为TreeMap是有序的,通过comparator接口我们可以对TreeMap的内部排序进行精密的控制
private final Comparator<? super K> comparator;
//TreeMap红-黑节点,为TreeMap的内部类
private transient Entry<K,V> root = null;
//容器大小
private transient int size = 0;
//TreeMap修改次数
private transient int modCount = 0;
//红黑树的节点颜色--红色
private static final boolean RED = false;
//红黑树的节点颜色--黑色
private static final boolean BLACK = true;
对于叶子节点Entry是TreeMap的内部类,它有几个重要的属性:
//键
K key;
//值
V value;
//左孩子
Entry<K,V> left = null;
//右孩子
Entry<K,V> right = null;
//父亲
Entry<K,V> parent;
//颜色
boolean color = BLACK;
增加节点的算法
红黑树在新增节点过程中比较复杂,复杂归复杂它同样必须要依据上面提到的五点规范,同时由于规则1、2、3基本都会满足,下面我们主要讨论规则4、5。假设我们这里有一棵最简单的树,我们规定新增的节点为N、它的父节点为P、P的兄弟节点为U、P的父节点为G。
红黑树增加节点
对于新节点的插入有如下三个关键地方:
1、插入新节点总是红色节点 。
2、如果插入节点的父节点是黑色, 能维持性质 。
3、如果插入节点的父节点是红色, 破坏了性质. 故插入算法就是通过重新着色或旋转, 来维持性质 。
新增的五种情况:
一、为根节点
二、父节点为黑色
三、若父节点P和P的兄弟节点U都为红色
四、若父节点P为红色,叔父节点U为黑色或者缺少,且新增节点N为P节点的右孩子
五、父节点P为红色,叔父节点U为黑色或者缺少,新增节点N为父节点P左孩子
put()
主要分为两个步骤,第一:构建排序二叉树,第二:平衡二叉树
对于排序二叉树的创建,其添加节点的过程如下:
1、以根节点为初始节点进行检索。
2、与当前节点进行比对,若新增节点值较大,则以当前节点的右子节点作为新的当前节点。否则以当前节点的左子节点作为新的当前节点。
3、循环递归2步骤知道检索出合适的叶子节点为止。
4、将新增节点与3步骤中找到的节点进行比对,如果新增节点较大,则添加为右子节点;否则添加为左子节点。
delete()