Crash知识Signal 信号系统层知识

浅谈Mach Exceptions

2016-09-01  本文已影响1674人  jamin_awaken

前言

大家都可能都在自己的应用中集成Crash收集服务,通常使用NSSetUncaughtExceptionHandler() + signal() / sigaction()的方式。它可以帮助我们收集到大部分Crash,直到后来发现stack overflow并不能被以上方法扑捉到,而且其它一些SDK也未能收集。那这篇文章简单介绍下Mach异常与signal的联系。


OS X 、iOS系统架构

osx_architecture-kernels_drivers

这张图片来之苹果Mac Technology Overview,除了用户体验层,OS X与iOS架构大体上是一直的。它们内核核心都是XNU(包含Mach、BSD)。Mach是微内核,负责操作系统中基本职责:进程和线程抽象、虚拟内存管理、任务调度、进程间通信和消息传递机制。BSD层简历在Mach上,提供一套可靠且更现代的API,提供了POSIX兼容性。
本文用到的XNU的版本号为3248.60.10的源码,下载地址。
你也可以在http://opensource.apple.com 中下载历史版本。

Mach exceptions 与 POSIX signals

Exception Type项通常会包含两个元素: Mach异常 和 Unix信号。
Mach exceptions: 允许在进程里或进程外处理,处理程序通过Mach RPC调用。
POSIX signals: 只在进程中处理,处理程序总是在发生错误的线程上调用。

Mach

异常首先是由处理器陷阱引发的。 通用的Mach异常处理程序exception_triage(),负责将异常转换成Mach 消息。exception_triage()通过调用exception_deliver()尝试把异常投递到thread、task最后是host。首先尝试将异常抛给thread端口,然后尝试抛给task端口,最后再抛给host端口(默认端口),如果没有一个端口返回KERN_SUCCESS,那么任务就会被终止。

// 位于 osfmk/kern/exception.c
/*
 *  Routine:    exception_triage
 *  Purpose:
 *      The current thread caught an exception.
 *      We make an up-call to the thread's exception server.
 *  Conditions:
 *      Nothing locked and no resources held.
 *      Called from an exception context, so
 *      thread_exception_return and thread_kdb_return
 *      are possible.
 *  Returns:
 *      KERN_SUCCESS if exception is handled by any of the handlers.
 */
kern_return_t
exception_triage(
    exception_type_t exception,
    mach_exception_data_t code,
    mach_msg_type_number_t codeCnt)
{
    thread_t thread;
    task_t task;
    host_priv_t host_priv;
    lck_mtx_t *mutex;
    kern_return_t kr = KERN_FAILURE;

    assert(exception != EXC_RPC_ALERT);

    /*
     * If this behavior has been requested by the the kernel
     * (due to the boot environment), we should panic if we
     * enter this function.  This is intended as a debugging
     * aid; it should allow us to debug why we caught an
     * exception in environments where debugging is especially
     * difficult.
     */
    if (panic_on_exception_triage) {
        panic("called exception_triage when it was forbidden by the boot environment");
    }

    thread = current_thread();
        
        // 分别尝试把异常投递到thread、task最后是host。
    /*
     * Try to raise the exception at the activation level.
     */
    mutex = &thread->mutex;
    if (KERN_SUCCESS == check_exc_receiver_dependency(exception, thread->exc_actions, mutex))
    {
        kr = exception_deliver(thread, exception, code, codeCnt, thread->exc_actions, mutex);
        if (kr == KERN_SUCCESS || kr == MACH_RCV_PORT_DIED)
            goto out;
    }

    /*
     * Maybe the task level will handle it.
     */
    task = current_task();
    mutex = &task->lock;
    if (KERN_SUCCESS == check_exc_receiver_dependency(exception, task->exc_actions, mutex))
    {
        kr = exception_deliver(thread, exception, code, codeCnt, task->exc_actions, mutex);
        if (kr == KERN_SUCCESS || kr == MACH_RCV_PORT_DIED)
            goto out;
    }

    /*
     * How about at the host level?
     */
    host_priv = host_priv_self();
    mutex = &host_priv->lock;
    
    if (KERN_SUCCESS == check_exc_receiver_dependency(exception, host_priv->exc_actions, mutex))
    {
        kr = exception_deliver(thread, exception, code, codeCnt, host_priv->exc_actions, mutex);
        if (kr == KERN_SUCCESS || kr == MACH_RCV_PORT_DIED)
            goto out;
    }

out:
    if ((exception != EXC_CRASH) && (exception != EXC_RESOURCE) &&
        (exception != EXC_GUARD) && (exception != EXC_CORPSE_NOTIFY))
        thread_exception_return();
    return kr;
}

异常行为

/*
 *  Machine-independent exception behaviors
 */

# define EXCEPTION_DEFAULT  1  // Send a catch_exception_raise message including the identity.

# define EXCEPTION_STATE  2 // Send a catch_exception_raise_state message including the thread state.

# define EXCEPTION_STATE_IDENTITY   3 // Send a catch_exception_raise_state_identity message including the thread identity and state.
// 位于 osfmk/kern/exception.c
/*
 *  Routine:    exception_deliver
 *  Purpose:
 *      Make an upcall to the exception server provided.
 *  Conditions:
 *      Nothing locked and no resources held.
 *      Called from an exception context, so
 *      thread_exception_return and thread_kdb_return
 *      are possible.
 *  Returns:
 *      KERN_SUCCESS if the exception was handled
 */
kern_return_t 
exception_deliver(
    thread_t        thread,
    exception_type_t    exception,
    mach_exception_data_t   code,
    mach_msg_type_number_t  codeCnt,
    struct exception_action *excp,
    lck_mtx_t           *mutex)
{
    ...  // 省略部分代码

    switch (behavior) {
        case EXCEPTION_STATE: {
            mach_msg_type_number_t state_cnt;
            thread_state_data_t state;
            
            c_thr_exc_raise_state++;
            state_cnt = _MachineStateCount[flavor];
            kr = thread_getstatus(thread, flavor,
                                  (thread_state_t)state,
                                  &state_cnt);
            if (kr == KERN_SUCCESS) {
                if (code64) {
                    kr = mach_exception_raise_state(exc_port,
                                                    exception,
                                                    code,
                                                    codeCnt,
                                                    &flavor,
                                                    state, state_cnt,
                                                    state, &state_cnt);
                } else {
                    kr = exception_raise_state(exc_port, exception,
                                               small_code,
                                               codeCnt,
                                               &flavor,
                                               state, state_cnt,
                                               state, &state_cnt);
                }
                if (kr == MACH_MSG_SUCCESS && exception != EXC_CORPSE_NOTIFY)
                    kr = thread_setstatus(thread, flavor,
                                          (thread_state_t)state,
                                          state_cnt);
            }
            return kr;
        }
            
        case EXCEPTION_DEFAULT:
            c_thr_exc_raise++;
            if (code64) {
                kr = mach_exception_raise(exc_port,
                                          retrieve_thread_self_fast(thread),
                                          retrieve_task_self_fast(thread->task),
                                          exception,
                                          code,
                                          codeCnt);
            } else {
                kr = exception_raise(exc_port,
                                     retrieve_thread_self_fast(thread),
                                     retrieve_task_self_fast(thread->task),
                                     exception,
                                     small_code, 
                                     codeCnt);
            }
            return kr;
            
        case EXCEPTION_STATE_IDENTITY: {
            mach_msg_type_number_t state_cnt;
            thread_state_data_t state;
            
            c_thr_exc_raise_state_id++;
            state_cnt = _MachineStateCount[flavor];
            kr = thread_getstatus(thread, flavor,
                                  (thread_state_t)state,
                                  &state_cnt);
            if (kr == KERN_SUCCESS) {
                if (code64) {
                    kr = mach_exception_raise_state_identity(exc_port,
                                                             retrieve_thread_self_fast(thread),
                                                             retrieve_task_self_fast(thread->task),
                                                             exception,
                                                             code, 
                                                             codeCnt,
                                                             &flavor,
                                                             state, state_cnt,
                                                             state, &state_cnt);
                } else {
                    kr = exception_raise_state_identity(exc_port,
                                                        retrieve_thread_self_fast(thread),
                                                        retrieve_task_self_fast(thread->task),
                                                        exception,
                                                        small_code, 
                                                        codeCnt,
                                                        &flavor,
                                                        state, state_cnt,
                                                        state, &state_cnt);
                }
                if (kr == MACH_MSG_SUCCESS && exception != EXC_CORPSE_NOTIFY)
                    kr = thread_setstatus(thread, flavor,
                                          (thread_state_t)state,
                                          state_cnt);
            }
            return kr;
        }
            
        default:
            panic ("bad exception behavior!");
            return KERN_FAILURE; 
    }/* switch */
}

BSD

当第一个BSD进程调用bsdinit_task()函数启动时,这函数还调用了ux_handler_init()函数设置了一个Mach内核线程跑ux_handler()的。

// 位于bsd/kern/bsd_init.c
/* Called with kernel funnel held */
void
bsdinit_task(void)
{
  proc_t p = current_proc();
  struct uthread *ut;
  thread_t thread;

  process_name("init", p);

  ux_handler_init(); // 初始化handler

  // 设置port
  thread = current_thread();
  (void) host_set_exception_ports(host_priv_self(),
     EXC_MASK_ALL & ~(EXC_MASK_RPC_ALERT),//pilotfish (shark) needs this port
     (mach_port_t) ux_exception_port,
     EXCEPTION_DEFAULT| MACH_EXCEPTION_CODES,
     0);

  ut = (uthread_t)get_bsdthread_info(thread);

  bsd_init_task = get_threadtask(thread);
  init_task_failure_data[0] = 0;

#if CONFIG_MACF
  mac_cred_label_associate_user(p->p_ucred);
  mac_task_label_update_cred (p->p_ucred, (struct task *) p->task);
#endif
  load_init_program(p);
  lock_trace = 1;
}
// 位于bsd/uxkern/ux_exception.c
void
ux_handler_init(void)
{
thread = THREAD_NULL;

    ux_exception_port = MACH_PORT_NULL;
    (void) kernel_thread_start((thread_continue_t)ux_handler, NULL, &thread);
    thread_deallocate(thread);
    proc_list_lock();
    if (ux_exception_port == MACH_PORT_NULL)  {
        (void)msleep(&ux_exception_port, proc_list_mlock, 0, "ux_handler_wait", 0);
    }
    proc_list_unlock();
}
static void
ux_handler(void)
{
    task_t      self = current_task();
    mach_port_name_t    exc_port_name;
    mach_port_name_t    exc_set_name;

    /* self->kernel_vm_space = TRUE; */
    ux_handler_self = self;

    ...  // 省略部分

    /* Message handling loop.   */
    //  消息处理循环
    for (;;) {
        struct rep_msg {
            mach_msg_header_t Head;
            NDR_record_t NDR;
            kern_return_t RetCode;
        } rep_msg;
        struct exc_msg {
            mach_msg_header_t Head;
            /* start of the kernel processed data */
            mach_msg_body_t msgh_body;
            mach_msg_port_descriptor_t thread;
            mach_msg_port_descriptor_t task;
            /* end of the kernel processed data */
            NDR_record_t NDR;
            exception_type_t exception;
            mach_msg_type_number_t codeCnt;
            mach_exception_data_t code;
            /* some times RCV_TO_LARGE probs */
            char pad[512];
        } exc_msg;
        mach_port_name_t    reply_port;
        kern_return_t    result;
        
        exc_msg.Head.msgh_local_port = CAST_MACH_NAME_TO_PORT(exc_set_name);
        exc_msg.Head.msgh_size = sizeof (exc_msg);
#if 0
        result = mach_msg_receive(&exc_msg.Head);
#else
        result = mach_msg_receive(&exc_msg.Head, MACH_RCV_MSG,
                                  sizeof (exc_msg), exc_set_name,
                                  MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL,
                                  0);
#endif
        if (result == MACH_MSG_SUCCESS) {
            reply_port = CAST_MACH_PORT_TO_NAME(exc_msg.Head.msgh_remote_port);
            // 消息处理
            if (mach_exc_server(&exc_msg.Head, &rep_msg.Head)) {
                result = mach_msg_send(&rep_msg.Head, MACH_SEND_MSG,
                                       sizeof (rep_msg),MACH_MSG_TIMEOUT_NONE,MACH_PORT_NULL);
                if (reply_port != 0 && result != MACH_MSG_SUCCESS)
                    mach_port_deallocate(get_task_ipcspace(ux_handler_self), reply_port);
            }
            
        }
        else if (result == MACH_RCV_TOO_LARGE)
        /* ignore oversized messages */;
        else
            panic("exception_handler");
    }
}

每一个thread、task及host自身都有一个异常端口数组,通过调用xxx_set_exception_ports()(xxx为thread、task或host)可以设置这些异常端口。 xxx_set_exception_ports()第四个参数为exception_behavior_t behavior,这将会使用到与行为相匹配的实现(exc.defs 或 mach_exc.defs)。
各种行为都在host层被catch_[mach]_exception_xxx处理,64位的对应的是有mach函数(可在/bsd/uxkern/ux_exception.c查看)。
这些函数通过调用ux_exception()将异常转换为对应的UNIX信号,并通过threadsignal()将信号投递到出错线程。

// EXCEPTION_DEFAULT行为  64位处理函数
kern_return_t
catch_mach_exception_raise(
        __unused mach_port_t exception_port,
        mach_port_t thread,
        mach_port_t task,
        exception_type_t exception,
        mach_exception_data_t code,
        __unused mach_msg_type_number_t codeCnt
)
{
    task_t          self = current_task();
    thread_t        th_act;
    ipc_port_t      thread_port;
    struct proc     *p;
    kern_return_t       result = MACH_MSG_SUCCESS;
    int         ux_signal = 0;
    mach_exception_code_t   ucode = 0;
    struct uthread      *ut;
    mach_port_name_t thread_name = CAST_MACH_PORT_TO_NAME(thread);
    mach_port_name_t task_name = CAST_MACH_PORT_TO_NAME(task);

    /*
     *  Convert local thread name to global port.
     */
   if (MACH_PORT_VALID(thread_name) &&
       (ipc_object_copyin(get_task_ipcspace(self), thread_name,
               MACH_MSG_TYPE_PORT_SEND,
               (void *) &thread_port) == MACH_MSG_SUCCESS)) {
        if (IPC_PORT_VALID(thread_port)) {
       th_act = convert_port_to_thread(thread_port);
       ipc_port_release_send(thread_port);
    } else {
       th_act = THREAD_NULL;
    }

    /*
     *  Catch bogus ports
     */
    if (th_act != THREAD_NULL) {

        /*
         *  Convert exception to unix signal and code.
         *  调用 ux_exception将exception转成UNIX信号
         */
        ux_exception(exception, code[0], code[1], &ux_signal, &ucode);

        ut = get_bsdthread_info(th_act);
        p = proc_findthread(th_act);

        /* Can't deliver a signal without a bsd process reference */
        // 如果未找到进程,那么这个信号就不会投递了
        if (p == NULL) {
            ux_signal = 0;
            result = KERN_FAILURE;
        }

        /*
         * Stack overflow should result in a SIGSEGV signal
         * on the alternate stack.
         * but we have one or more guard pages after the
         * stack top, so we would get a KERN_PROTECTION_FAILURE
         * exception instead of KERN_INVALID_ADDRESS, resulting in
         * a SIGBUS signal.
         * Detect that situation and select the correct signal.
         */
        if (code[0] == KERN_PROTECTION_FAILURE &&
        ux_signal == SIGBUS) {
            user_addr_t     sp, stack_min, stack_max;
            int         mask;
            struct sigacts  *ps;

            sp = code[1];

            stack_max = p->user_stack;
            stack_min = p->user_stack - MAXSSIZ;
            if (sp >= stack_min &&
            sp < stack_max) {
                /*
                 * This is indeed a stack overflow.  Deliver a
                 * SIGSEGV signal.
                 * 因为栈溢出需返回的是SIGSEGV,这里把SIGBUS替换成SIGSEGV
                 */
                ux_signal = SIGSEGV;

                /*
                 * If the thread/process is not ready to handle
                 * SIGSEGV on an alternate stack, force-deliver
                 * SIGSEGV with a SIG_DFL handler.
                 */
                mask = sigmask(ux_signal);
                ps = p->p_sigacts;
                if ((p->p_sigignore & mask) ||
                (ut->uu_sigwait & mask) ||
                (ut->uu_sigmask & mask) ||
                (ps->ps_sigact[SIGSEGV] == SIG_IGN) ||
                (! (ps->ps_sigonstack & mask))) {
                    p->p_sigignore &= ~mask;
                    p->p_sigcatch &= ~mask;
                    ps->ps_sigact[SIGSEGV] = SIG_DFL;
                    ut->uu_sigwait &= ~mask;
                    ut->uu_sigmask &= ~mask;
                }
            }
        }
        /*
         *  Send signal.  发送信号
         */
        if (ux_signal != 0) {
            ut->uu_exception = exception;
            //ut->uu_code = code[0]; // filled in by threadsignal
            ut->uu_subcode = code[1];           
            threadsignal(th_act, ux_signal, code[0]);
        }
        if (p != NULL) 
            proc_rele(p);
        thread_deallocate(th_act);
    }
    else
        result = KERN_INVALID_ARGUMENT;
    }
    else
        result = KERN_INVALID_ARGUMENT;

    /*
     *  Delete our send rights to the task port.
     */
    (void)mach_port_deallocate(get_task_ipcspace(ux_handler_self), task_name);

    return (result);
}

所以,如果异常是栈溢出,那么signal是SIGSEGV而不是SIGBUS;如果进程退出了或者线程/进程未准备好处理signal,所注册的signal()是无法接收信号的。

// 位于bsd/uxkern/ux_exception.c
/*
 *  ux_exception translates a mach exception, code and subcode to
 *  a signal and u.u_code.  Calls machine_exception (machine dependent)
 *  to attempt translation first.
 */

static
void ux_exception(
        int exception,
        mach_exception_code_t code,
        mach_exception_subcode_t subcode,
        int *ux_signal,
        mach_exception_code_t *ux_code)
{
    /*
     *  Try machine-dependent translation first.
     */
    if (machine_exception(exception, code, subcode, ux_signal, ux_code))
    return;
    
    switch(exception) {

    case EXC_BAD_ACCESS:
        if (code == KERN_INVALID_ADDRESS)
            *ux_signal = SIGSEGV;
        else
            *ux_signal = SIGBUS;
        break;

    case EXC_BAD_INSTRUCTION:
        *ux_signal = SIGILL;
        break;

    case EXC_ARITHMETIC:
        *ux_signal = SIGFPE;
        break;

    case EXC_EMULATION:
        *ux_signal = SIGEMT;
        break;

    case EXC_SOFTWARE:
        switch (code) {

        case EXC_UNIX_BAD_SYSCALL:
        *ux_signal = SIGSYS;
        break;
        case EXC_UNIX_BAD_PIPE:
        *ux_signal = SIGPIPE;
        break;
        case EXC_UNIX_ABORT:
        *ux_signal = SIGABRT;
        break;
        case EXC_SOFT_SIGNAL:
        *ux_signal = SIGKILL;
        break;
        }
        break;

    case EXC_BREAKPOINT:
        *ux_signal = SIGTRAP;
        break;
    }
}

把Mach exception 和 UNIX signal 的转换制表后,如下


exception_c_signal

用下图来展示而Mach exception转换成signal的流程(图截自 Mac OS X and iOS Internals)


Mach exception转化成signal的流程

实践

在Mach中,异常是通过内核中的主要设施-消息传递机制-进行处理的。一个异常与一条消息并无差别,由出错的线程或任务(通过 msg_send())发送,并通过一个处理程(通过 msg_recv())接收。
由于Mach的异常以消息机制处理而不是通过函数调用,exception messages可以被转发到先前注册的Mach exception处理程序。这意味着你可以插入一个exception处理程序,而不干扰现有的无论是调试器或Apple's crash reporter。可以使用mach_msg() // flag MACH_SEND_MSG发送原始消息到以前注册的处理程序的Mach端口,将消息转发到一个现有的处理程序。

知道以上这些,那我们来尝试扑捉一下Mach异常


void catchMACHExceptions() {
    
    kern_return_t rc = 0;
    exception_mask_t excMask = EXC_MASK_BAD_ACCESS |
    EXC_MASK_BAD_INSTRUCTION |
    EXC_MASK_ARITHMETIC |
    EXC_MASK_SOFTWARE |
    EXC_MASK_BREAKPOINT;
    
    rc = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &myExceptionPort);
    if (rc != KERN_SUCCESS) {
        fprintf(stderr, "------->Fail to allocate exception port\\\\\\\\n");
        return;
    }
    
    rc = mach_port_insert_right(mach_task_self(), myExceptionPort, myExceptionPort, MACH_MSG_TYPE_MAKE_SEND);
    if (rc != KERN_SUCCESS) {
        fprintf(stderr, "-------->Fail to insert right");
        return;
    }
    
    rc = thread_set_exception_ports(mach_thread_self(), excMask, myExceptionPort, EXCEPTION_DEFAULT, MACHINE_THREAD_STATE);
    if (rc != KERN_SUCCESS) {
        fprintf(stderr, "-------->Fail to  set exception\\\\\\\\n");
        return;
    }
    
    // at the end of catchMachExceptions, spawn the exception handling thread
    pthread_t thread;
    pthread_create(&thread, NULL, exc_handler, NULL);
} // end catchMACHExceptions

static void *exc_handler(void *ignored) {
    // Exception handler – runs a message loop. Refactored into a standalone function
    // so as to allow easy insertion into a thread (can be in same program or different)
    mach_msg_return_t rc;
    fprintf(stderr, "Exc handler listening\\\\\\\\n");
    // The exception message, straight from mach/exc.defs (following MIG processing) // copied here for ease of reference.
    typedef struct {
        mach_msg_header_t Head;
        /* start of the kernel processed data */
        mach_msg_body_t msgh_body;
        mach_msg_port_descriptor_t thread;
        mach_msg_port_descriptor_t task;
        /* end of the kernel processed data */
        NDR_record_t NDR;
        exception_type_t exception;
        mach_msg_type_number_t codeCnt;
        integer_t code[2];
        int flavor;
        mach_msg_type_number_t old_stateCnt;
        natural_t old_state[144];
    } Request;
    
    Request exc;

    
    struct rep_msg {
        mach_msg_header_t Head;
        NDR_record_t NDR;
        kern_return_t RetCode;
    } rep_msg;
    
    
    for(;;) {
        // Message Loop: Block indefinitely until we get a message, which has to be
        // 这里会阻塞,直到接收到exception message,或者线程被中断。
        // an exception message (nothing else arrives on an exception port)
        rc = mach_msg( &exc.Head,
                      MACH_RCV_MSG|MACH_RCV_LARGE,
                      0,
                      sizeof(Request),
                      myExceptionPort, // Remember this was global – that's why.
                      MACH_MSG_TIMEOUT_NONE,
                      MACH_PORT_NULL);
        
        if(rc != MACH_MSG_SUCCESS) {
            /*... */
            break ;
        };
        
        
        // Normally we would call exc_server or other. In this example, however, we wish
        // to demonstrate the message contents:
        
        printf("Got message %d. Exception : %d Flavor: %d. Code %lld/%lld. State count is %d\\\\\\\\n" ,
               exc.Head.msgh_id, exc.exception, exc.flavor,
               exc.code[0], exc.code[1], // can also print as 64-bit quantity
               exc.old_stateCnt);
        
        rep_msg.Head = exc.Head;
        rep_msg.NDR = exc.NDR;
        rep_msg.RetCode = KERN_FAILURE;
        
        kern_return_t result;
        if (rc == MACH_MSG_SUCCESS) {
            result = mach_msg(&rep_msg.Head,
                              MACH_SEND_MSG,
                              sizeof (rep_msg),
                              0,
                              MACH_PORT_NULL,
                              MACH_MSG_TIMEOUT_NONE,
                              MACH_PORT_NULL);
        }
    }
    
    return  NULL;
    
} // end exc_handler

接下来,我们测试一下。

- (void)test
{
    [self test];
}

调用这个方法,结果如下

Exc handler listening
Got message 2401. Exception : 1 Flavor: 0. Code 2/1486065656. State count is 8
(lldb)

我们可以查看mach/exception_types.h 对exception type的定义
Exception: 1 ,即为EXC_BAD_ACCESS
code: 2,即KERN_PROTECTION_FAILURE
ux_exception() 函数告诉我们Code与signal是怎么转换的。
也就是 Exception = EXC_BAD_ACCESS, code = 2 对应的是SIGBUS信号,又因为为是stack overflow,信号应该是SIGSEGV。

那么结这个exception就是:

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Subtype: KERN_PROTECTION_FAILURE

再试试其它的:

int *pi = (int*)0x00001111;
 *pi = 17;

Exc handler listening
Got message 2401. Exception : 1 Flavor: 0. Code 1/4369. State count is 8
(lldb)

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Subtype: KERN_INVALID_ADDRESS

最后

除了上面硬件产生的信号,另外还有软件产生的信号。软件产生的信号来自kill()pthread_kill()两个函数的调用,大概过程是这样的:kill()/pthread_kill() --> ... --> psignal_internal() --> act_set_astbsd()。最终也会调用act_set_astbsd()发送信号到目标线程。这意味着Mach exception流程是不会走的。
另外,在abort()源码注释着:<rdar://problem/7397932> abort() should call pthread_kill to deliver a signal to the aborting thread , 它是这样调用的(void)pthread_kill(pthread_self(), SIGABRT);。Apple’s Crash Reporter 把SIGABRT的Mach exception type记为EXC_CRASH,不同与上面转变表。

Exception Type: EXC_CRASH (SIGABRT)
Exception Codes: 0x0000000000000000, 0x0000000000000000

所以尽管Mach exception handle 比 UNIX signal handle 更有优势,但我们还是须要注册signal handle用于处理EXC_SOFTWARE/EXC_CRASH。

由于篇幅有限,有些细节可能并没有展现出来,如果你想有深入的了解,可以阅读下面参考文献,或者一些开源框架。最后,希望这篇文章可以帮助你了解Mach exception。


参考文献:
Apple Kernel Programming Guide
漫谈iOS Crash收集框架
Mac OS X and iOS Internals:To the Apple’s Core(中文译名:深入解析 MAC OS X & IOS 操作系统)
Mach Exception Handlers
xnu-3248.60.10.tar.gz
Understanding Crash Reports on iPhone OS(wwdc)
Understanding and Analyzing iOS Application Crash Reports

上一篇下一篇

猜你喜欢

热点阅读