常见的系统瓶颈
一、数据库
工作任务内存超过可用的RAM内存
长/短查询
写入冲突
大连接(join)占用内存
虚拟化
共享一个HDD、磁盘寻死(disk seek death)
在云端网络I/O波动
二、编程
线程:死锁、调试、非线性扩展等
事件驱动编程:callback()过于复杂、如何在函数调用中存储有状态等
缺乏调优、跟踪、日志等
单模块不可扩展、单点故障(SPOF:Single Point Of Failure)、非横向扩展等
有状态应用程序
设计问题:开发的应用程序只在自己的机器行运行正常,或者只是在几个人测试的时候正常(没有经历压力测试)。
算法过于复杂
相关服务,例如DNS查找以及其他可能屏蔽的服务
堆栈空间
三、磁盘
访问本地磁盘
随机访问磁盘I/O
磁盘碎片
当SSD写入的数据大于SSD容量时,性能会下降
四、OS
Fsync饱和,Linux缓冲区填塞(Fsync flushing, linux buffer cache filling up)
TCP缓冲区太小
文件描述符限制
功率分配(Power budget)
五、缓存
没使用memcached(数据库崩溃)
HTTP中:headers、etags、没有使用gzip压缩等。
没有充分利用浏览器缓存
字节码缓存(如PHP)
L1/L2缓存:这是个令人头疼的大瓶颈。把关键并且经常访问的数据存储在L1/L2中。这涉及到很多:snappy网络I/O,列数据库直接在压缩数据上运行算法等。利用一些技术不销毁你的TLB。最重要的思想是紧紧的抓住计算机的体系结构,涉及多核CPU,L1/L2,共享的L3,NUMA RAM,从DRAM到芯片数据传输带宽/延迟,DRAM缓存的DiskPages,DirtyPages,流经CPU<->DRAM<->NIC的TCP包。
六、CPU
CPU过载
内容切换—>单核上开启的线程过多、Linux调度器、系统调用太多等
IO等待—>所有的CPU在同速等待
CPU缓存:缓存数据是一个细粒度进程,为了在多个实例与不同的值数据之间找到正确的平衡,来保持缓存数据的一致性和繁重同步。
底板吞吐量(Backplane throughput)
七、网络
NIC刷爆、IRQ饱和、软中断占用掉了100%CPU
DNS查询
数据包丢失
网络中存在预期外的路由
访问网络磁盘
共享SAN
服务器故障—>无法从服务处得到响应
八、进程
测试时间
开发时间
团队规模
预算
代码债务
九、内存
内存不足—>杀死进程,切换到swap,挂起
内存不足导致磁盘交换(与swap相关)
记忆库开销过大(Memory library overhead)
内存分片(在Java中需要会因为内存回收而停顿;在C中,malloc总是开始分配内存)