JAVA

HashMap源码解析(jdk1.7)

2022-05-20  本文已影响0人  爱的旋转体

https://github.com/xuzhipeng1028/jdk7

HashMap类源码

/*
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

package java.util;
import java.io.*;

/**
 * Hash table based implementation of the <tt>Map</tt> interface.  This
 * implementation provides all of the optional map operations, and permits
 * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
 * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
 * unsynchronized and permits nulls.)  This class makes no guarantees as to
 * the order of the map; in particular, it does not guarantee that the order
 * will remain constant over time.
 *
 * map接口基于hash表的实现。
 * 这个实现提供了所有可选的map操作,允许null键和null值。
 * 这个HashMap类大致相当于Hashtable,除了它是线程不安全的和允许null。
 * 这个类不保证map的顺序,尤其它不保证随着时间推移,顺序一直保持不变。
 *
 * <p>This implementation provides constant-time performance for the basic
 * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
 * disperses the elements properly among the buckets.  Iteration over
 * collection views requires time proportional to the "capacity" of the
 * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
 * of key-value mappings).  Thus, it's very important not to set the initial
 * capacity too high (or the load factor too low) if iteration performance is
 * important.
 *
 * 这个实现为get和put方法提供了常数时间的性能,假设哈希函数将元素正确地分散在桶中。
 * 集合视图的迭代需要的时间与 HashMap 实例的“容量”(桶的数量)加上它的大小(键值映射的数量)成正比。
 * 因此,如果迭代性能重要的话,不要设置初始容量太大或者加载因子太小。
 *
 * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
 * performance: <i>initial capacity</i> and <i>load factor</i>.  The
 * <i>capacity</i> is the number of buckets in the hash table, and the initial
 * capacity is simply the capacity at the time the hash table is created.  The
 * <i>load factor</i> is a measure of how full the hash table is allowed to
 * get before its capacity is automatically increased.  When the number of
 * entries in the hash table exceeds the product of the load factor and the
 * current capacity, the hash table is <i>rehashed</i> (that is, internal data
 * structures are rebuilt) so that the hash table has approximately twice the
 * number of buckets.
 *
 * 一个HashMap的实例有两个参数影响它的性能:初始化容量和加载因子。
 * 容量是hash表中桶的数量,初始化容量只是创建hash表时的容量。
 * 加载因子是衡量哈希表在其容量自动增加之前允许达到的程度。
 * 当hash表中entry的数量超过了加载因子和当前容量的乘积,hash表就会重新进行散列(也就是内部的数据结构重新构建),桶的大小大约是变成两倍。
 *
 * <p>As a general rule, the default load factor (.75) offers a good tradeoff
 * between time and space costs.  Higher values decrease the space overhead
 * but increase the lookup cost (reflected in most of the operations of the
 * <tt>HashMap</tt> class, including <tt>get</tt> and <tt>put</tt>).  The
 * expected number of entries in the map and its load factor should be taken
 * into account when setting its initial capacity, so as to minimize the
 * number of rehash operations.  If the initial capacity is greater
 * than the maximum number of entries divided by the load factor, no
 * rehash operations will ever occur.
 *
 * 作为基本规则,默认的加载因子0.75在时间成本和空间成本之间提供了一个好的权衡。
 * 更高的值会降低空间成本,但是增加了查找成本(影响了HashMap大部分操作,包括get和put)。
 * 当设置初始化容量时,map的被期望的entry的数量和加载因子应该被考虑到,以便最小化重新散列操作的次数。
 * 如果初始化容量高于entry的最大数量除以加载因子,则rehash操作永远不会发生。
 *
 * <p>If many mappings are to be stored in a <tt>HashMap</tt> instance,
 * creating it with a sufficiently large capacity will allow the mappings to
 * be stored more efficiently than letting it perform automatic rehashing as
 * needed to grow the table.
 *
 * 如果许多映射将会被存储在一个HashMap实例中,那么与让它有需要的时候自动rehash,用一个足够大的容量创建实例将会更有效率的存储。
 *
 * <p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access a hash map concurrently, and at least one of
 * the threads modifies the map structurally, it <i>must</i> be
 * synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more mappings; merely changing the value
 * associated with a key that an instance already contains is not a
 * structural modification.)  This is typically accomplished by
 * synchronizing on some object that naturally encapsulates the map.
 *
 * 注意这个实现是线程不安全的。
 * 如果多个线程并发访问同一个map,并且至少有一个线程会修改map的结构,它必须在外部进行同步。
 * (结构化的修改是任何一个添加或修改一个或多个映射的操作,仅仅改变一个已经存在的key的value不是一个结构化的修改。)
 * 这通常是通过同步一些自然封装map的对象来完成的。
 *
 * If no such object exists, the map should be "wrapped" using the
 * {@link Collections#synchronizedMap Collections.synchronizedMap}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the map:<pre>
 *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 *
 * 如果没有这样的对象存在,map应该使用Collections.synchronizedMap方法进行包装。
 * 这最好在创建时完成,以防止偶然的非同步的访问该map。
 *
 * <p>The iterators returned by all of this class's "collection view methods"
 * are <i>fail-fast</i>: if the map is structurally modified at any time after
 * the iterator is created, in any way except through the iterator's own
 * <tt>remove</tt> method, the iterator will throw a
 * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than risking
 * arbitrary, non-deterministic behavior at an undetermined time in the
 * future.
 *
 * 所有该类的集合视图方法返回的迭代器都是快速失败的。
 * 如果在迭代器被创建后在任何时候结构化的修改map,
 * 除了通过迭代器自己的 remove 方法之外的任何方式,迭代器都会抛出一个ConcurrentModificationException异常。
 * 因此,迭代器快速而干净地失败,而不是在未来不确定的时间冒任意的、非确定性的行为的风险。
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness: <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 *
 * 注意:迭代器快速失败的行为不能像它说的那样被保证,
 * 一般来说,在存在不同步的并发修改的情况下不可能做出任何硬保证。
 * 快速失败的迭代器会尽最大努力抛出ConcurrentModificationException。
 * 因此,编写一个依赖于这个异常的正确性的程序是错误的:迭代器的快速失败行为应该只用于检测bug。
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @param <K> the type of keys maintained by this map
 * @param <V> the type of mapped values
 *
 * @author  Doug Lea
 * @author  Josh Bloch
 * @author  Arthur van Hoff
 * @author  Neal Gafter
 * @see     Object#hashCode()
 * @see     Collection
 * @see     Map
 * @see     TreeMap
 * @see     Hashtable
 * @since   1.2
 */

public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable
{

    /**
     * The default initial capacity - MUST be a power of two.
     * 默认初始化容量16,必须是2的幂次方
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     * 最大容量,如果任何一个带参数的构造函数隐式指定了更高的值,则使用该最大值
     * 必须是2的幂次方,且必须小于等于2的30次方
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     * 当没有在构造函数指定时,使用该默认加载因子
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * An empty table instance to share when the table is not inflated.
     * 当数组没有初始化时共享的空数组实例
     */
    static final Entry<?,?>[] EMPTY_TABLE = {};

    /**
     * The table, resized as necessary. Length MUST Always be a power of two.
     * 数组,根据需要调整大小,数组长度必须是2的幂次方
     */
    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

    /**
     * The number of key-value mappings contained in this map.
     * map中实际元素的个数
     */
    transient int size;

    /**
     * The next size value at which to resize (capacity * load factor).
     * 下次数组扩容的阈值,等于数组容量*加载因子
     * @serial
     */
    // If table == EMPTY_TABLE then this is the initial capacity at which the
    // table will be created when inflated.
    //如果 table == EMPTY_TABLE 那么这是膨胀时创建表的初始容量
    int threshold;

    /**
     * The load factor for the hash table.
     * hash表的加载因子
     * @serial
     */
    final float loadFactor;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     * 这个hashmap已经在结构上被修改的次数,
     * 结构上的修改指的是改变hashmap映射数量或修改它内部结构(比如重新计算hash值),
     * 这个字段被用来当使用迭代器迭代时快速失败。
     */
    transient int modCount;

    /**
     * The default threshold of map capacity above which alternative hashing is
     * used for String keys. Alternative hashing reduces the incidence of
     * collisions due to weak hash code calculation for String keys.
     * map容量的默认阈值,替代散列用于字符串键。
     * 由于String类型键的散列码计算较弱,替代散列降低了冲突的发生率
     * <p/>
     * This value may be overridden by defining the system property
     * {@code jdk.map.althashing.threshold}. A property value of {@code 1}
     * forces alternative hashing to be used at all times whereas
     * {@code -1} value ensures that alternative hashing is never used.
     * 这个值可能被定义在系统属性{@code jdk.map.althashing.threshold}覆盖,
     * 值为1会强制替代散列在每时每刻被使用,然而值为-1会确保替代散列从来不会被使用。
     */
    static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;

    /**
     * holds values which can't be initialized until after VM is booted.
     * 保证在虚拟机启动会才进行初始化
     */
    private static class Holder {

        /**
         * Table capacity above which to switch to use alternative hashing.
         * 切换到使用替代散列的表容量
         */
        static final int ALTERNATIVE_HASHING_THRESHOLD;

        static {
            String altThreshold = java.security.AccessController.doPrivileged(
                new sun.security.action.GetPropertyAction(
                    "jdk.map.althashing.threshold"));

            int threshold;
            try {
                // 如果设置了系统属性值(jdk.map.althashing.threshold)则使用系统属性值,
                // 否则使用默认的ALTERNATIVE_HASHING_THRESHOLD_DEFAULT
                threshold = (null != altThreshold)
                        ? Integer.parseInt(altThreshold)
                        : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;

                // disable alternative hashing if -1
                // 如果阈值为-1,则设置为Integer.MAX_VALUE
                if (threshold == -1) {
                    threshold = Integer.MAX_VALUE;
                }
                // 阈值必须是正整数
                if (threshold < 0) {
                    throw new IllegalArgumentException("value must be positive integer.");
                }
            } catch(IllegalArgumentException failed) {
                throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
            }

            ALTERNATIVE_HASHING_THRESHOLD = threshold;
        }
    }

    /**
     * A randomizing value associated with this instance that is applied to
     * hash code of keys to make hash collisions harder to find. If 0 then
     * alternative hashing is disabled.
     * 一个和当前实例关联的随机值被应用到key的hasn值计算中,以降低hash冲突。
     * 如果设置为0那么替代散列将被禁用
     */
    transient int hashSeed = 0;

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     * 指定初始化容量和加载因子的空hashmap的构造函数
     *
     * @param  initialCapacity the initial capacity 初始化容量
     * @param  loadFactor      the load factor 加载因子
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive 如果初始化容量是负数或者加载因子是非正数则抛出异常
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        // 自定义的容量大于最大容量则被设置成最大容量
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        this.loadFactor = loadFactor;
        threshold = initialCapacity;
        init();
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     * 指定初始化容量,使用默认加载因子0.75的构造函数
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     * hashmap无参构造,指定默认的初始化容量16和默认的加载因子0.75
     */
    public HashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs a new <tt>HashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified <tt>Map</tt>.
     * 用指定map来构造一个新的hashmap。
     * 使用默认的加载因子0.75,一个足够容纳指定map大小的初始化容量。
     *
     * @param   m the map whose mappings are to be placed in this map
     * @throws  NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
        inflateTable(threshold);

        putAllForCreate(m);
    }

    /**
     * 获取大于等于number的最小的2的幂次方数
     * @param number 必须是非负数
     * @return
     */
    private static int roundUpToPowerOf2(int number) {
        // assert number >= 0 : "number must be non-negative";
        // 如果number >= 最大容量,返回最大容量;如果 <= 1,返回1;
        // 否则当 1 < number < MAXIMUM_CAPACITY, 返回Integer.highestOneBit((number - 1) << 1),
        // Integer.highestOneBit(i)返回小于等于i的最大的2的幂次方,
        // number=15,Integer.highestOneBit((number - 1) << 1) -> 16
        // number=16,Integer.highestOneBit((number - 1) << 1) -> 16
        // number=17,Integer.highestOneBit((number - 1) << 1) -> 32
        // number-1是为了处理number正好是2的幂次方的情况
        return number >= MAXIMUM_CAPACITY
                ? MAXIMUM_CAPACITY
                : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
    }

    /**
     * Inflates the table.
     * 初始化数组
     */
    private void inflateTable(int toSize) {
        // Find a power of 2 >= toSize
        // 获取大于等于toSize的最小的2的幂次方数
        int capacity = roundUpToPowerOf2(toSize);
        // 取容量*加载因子和最大容量+1中的较小者作为阈值
        threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
        // 初始化table
        table = new Entry[capacity];
        initHashSeedAsNeeded(capacity);
    }

    // internal utilities

    /**
     * Initialization hook for subclasses. This method is called
     * in all constructors and pseudo-constructors (clone, readObject)
     * after HashMap has been initialized but before any entries have
     * been inserted.  (In the absence of this method, readObject would
     * require explicit knowledge of subclasses.)
     * 为子类预留的初始化钩子函数,
     * 在初始化hashmap之后但在任何一个元素插入之前,在所有构造函数和伪构造函数中调用该方法。
     * (如果没有该方法,readObject需要明确了解子类)
     */
    void init() {
    }

    /**
     * Initialize the hashing mask value. We defer initialization until we
     * really need it.
     * 初始化散列掩码值。当我们真正需要它时在进行初始化。
     */
    final boolean initHashSeedAsNeeded(int capacity) {
        boolean currentAltHashing = hashSeed != 0;
        boolean useAltHashing = sun.misc.VM.isBooted() &&
                (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
        boolean switching = currentAltHashing ^ useAltHashing;
        // 当switching为true时重新设置hashSeed,有以下两种情况:
        // 1.currentAltHashing = true(hashSeed != 0),useAltHashing = false(容量 < Holder.ALTERNATIVE_HASHING_THRESHOLD),
        // 2.currentAltHashing = false(hashSeed == 0),useAltHashing = true(容量 >= Holder.ALTERNATIVE_HASHING_THRESHOLD),
        if (switching) {
            hashSeed = useAltHashing
                ? sun.misc.Hashing.randomHashSeed(this)
                : 0;
        }
        return switching;
    }

    /**
     * Retrieve object hash code and applies a supplemental hash function to the
     * result hash, which defends against poor quality hash functions.  This is
     * critical because HashMap uses power-of-two length hash tables, that
     * otherwise encounter collisions for hashCodes that do not differ
     * in lower bits. Note: Null keys always map to hash 0, thus index 0.
     * 检索对象散列码并将补充散列函数应用于结果散列,以防止质量差的散列函数。
     * 这很关键,因为 HashMap 使用长度为二的幂的哈希表,否则会遇到低位没有差异的 hashCode 的冲突。
     * 注意:空键总是映射到哈希 0,因此索引 0。
     */
    final int hash(Object k) {
        int h = hashSeed;
        if (0 != h && k instanceof String) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();

        // This function ensures that hashCodes that differ only by
        // constant multiples at each bit position have a bounded
        // number of collisions (approximately 8 at default load factor).
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

    /**
     * Returns index for hash code h.
     * 返回指定hash值在指定大小数组中的位置。
     */
    static int indexFor(int h, int length) {
        // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
        // 相当于取余 h % length
        return h & (length-1);
    }

    /**
     * Returns the number of key-value mappings in this map.
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     *
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     * 返回指定key的value
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     * 更正式地说,如果此映射包含从键 {@code k} 到值 {@code v} 的映射,
     * 使得 {@code (key==null ? k==null : key.equals(k))},然后这个方法返回 {@code v};
     * 否则返回 {@code null}。 (最多可以有一个这样的映射。)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     * 返回值为null不能表明map中不包含该key,也有可能是key的value就是null。
     * containsKey方法会区分两种情况。
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        if (key == null)
            return getForNullKey();
        Entry<K,V> entry = getEntry(key);

        return null == entry ? null : entry.getValue();
    }

    /**
     * Offloaded version of get() to look up null keys.  Null keys map
     * to index 0.  This null case is split out into separate methods
     * for the sake of performance in the two most commonly used
     * operations (get and put), but incorporated with conditionals in
     * others.
     * 查找空键的get方法。
     * 空键映射到数组的0号位置。
     * 为了提高两个最常用操作(get 和 put)的性能,这种 null 情况被拆分为单独的方法,但在其他操作中与条件结合。
     */
    private V getForNullKey() {
        if (size == 0) {
            return null;
        }
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null)
                return e.value;
        }
        return null;
    }

    /**
     * Returns <tt>true</tt> if this map contains a mapping for the
     * specified key.
     * 如果map包含指定key则返回true
     *
     * @param   key   The key whose presence in this map is to be tested
     * @return <tt>true</tt> if this map contains a mapping for the specified
     * key.
     */
    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    /**
     * Returns the entry associated with the specified key in the
     * HashMap.  Returns null if the HashMap contains no mapping
     * for the key.
     * 返回map中指定key的entry。
     * 如果map中不包含该key,则返回null。
     */
    final Entry<K,V> getEntry(Object key) {
        if (size == 0) {
            return null;
        }

        int hash = (key == null) ? 0 : hash(key);
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     * 在map将指定的key和value进行关联。
     * 如果map已经包含了该key的,则旧的值将会被替换成新的。
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     *         该方法返回与指定key关联的旧的value,如果map中没有该key的话则返回null。
     *         null返回值也可以表示map中过去与该key关联的值就是null。
     */
    public V put(K key, V value) {
        // 如果当前数组==EMPTY_TABLE表示数组还没有初始化,那么先初始化数组,再继续插入
        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }
        // 1.7hashmap允许key和value为null
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key);
        int i = indexFor(hash, table.length);
        // 遍历数组指定位置的链表,找到指定key,并替换value,将旧值返回
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }

        modCount++;
        // 之前没有的话则插入一个新的
        addEntry(hash, key, value, i);
        return null;
    }

    /**
     * Offloaded version of put for null keys
     * 插入key为null的元素,插到了数组中索引为0的位置
     */
    private V putForNullKey(V value) {
        // 遍历数组中索引为0的位置的链表,找到key为nul的元素,替换value,返回旧值
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;
        //链表中没找到key为null的元素,则插入新的元素
        addEntry(0, null, value, 0);
        return null;
    }

    /**
     * This method is used instead of put by constructors and
     * pseudoconstructors (clone, readObject).  It does not resize the table,
     * check for comodification, etc.  It calls createEntry rather than
     * addEntry.
     * 这个方法被用来替代put方法,该方法不会扩容数组,检查修改次数等。
     * 它调用createEntry方法而不是addEntry方法。
     */
    private void putForCreate(K key, V value) {
        int hash = null == key ? 0 : hash(key);
        int i = indexFor(hash, table.length);

        /**
         * Look for preexisting entry for key.  This will never happen for
         * clone or deserialize.  It will only happen for construction if the
         * input Map is a sorted map whose ordering is inconsistent w/ equals.
         * 寻找指定key已存在的entry,存在则替换value。
         * 对于clone or deserialize永远不会发生。
         */
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k)))) {
                e.value = value;
                return;
            }
        }

        createEntry(hash, key, value, i);
    }

    private void putAllForCreate(Map<? extends K, ? extends V> m) {
        // 遍历指定map中的所有元素放入当前map中
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
            putForCreate(e.getKey(), e.getValue());
    }

    /**
     * Rehashes the contents of this map into a new array with a
     * larger capacity.  This method is called automatically when the
     * number of keys in this map reaches its threshold.
     * 将map中的数据放入一个更大容量的数组中。
     * 当map中key的数量达到了阈值,这个方法会被自动调用。
     *
     * If current capacity is MAXIMUM_CAPACITY, this method does not
     * resize the map, but sets threshold to Integer.MAX_VALUE.
     * This has the effect of preventing future calls.
     * 如果当前数组容量已经达到了最大值,这个方法不会扩容,但是会将阈值设置成Integer.MAX_VALUE。
     * 这防止了将来被再次调用。
     *
     * @param newCapacity the new capacity, MUST be a power of two;
     *        must be greater than current capacity unless current
     *        capacity is MAXIMUM_CAPACITY (in which case value
     *        is irrelevant).
     *        数组新容量大小,必须是2的幂次方;必须大于当前容量,除非当前容量已经是最大值,
     *        这种情况下新容量是多少就无关紧要了。
     *
     */
    void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        // 如果当前数组容量已经达到了最大值,这个方法不会扩容,但是会将阈值设置成Integer.MAX_VALUE。
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }
        // 创建新数组
        Entry[] newTable = new Entry[newCapacity];
        // 将旧数组中的元素全部转移到新数组中
        transfer(newTable, initHashSeedAsNeeded(newCapacity));
        table = newTable;
        threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
    }

    /**
     * Transfers all entries from current table to newTable.
     * 将旧数组中的所有元素转移到新数组中
     */
    void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
        // 遍历旧数组
        for (Entry<K,V> e : table) {
            // 遍历数组中每一个位置的链表
            while(null != e) {
                Entry<K,V> next = e.next;
                // 是否需要重新计算hash值,默认是不需要的,除非自定义了系统属性(jdk.map.althashing.threshold),并且满足相关条件。
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                // 计算每一个节点在新数组中的位置。
                int i = indexFor(e.hash, newCapacity);
                // 采用头插法,将每一个元素设置为新的头结点,之前的头结点作为next
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
        }
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for
     * any of the keys currently in the specified map.
     * 把指定map中的元素全部放入当前map中。
     *
     *
     * @param m mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        int numKeysToBeAdded = m.size();
        if (numKeysToBeAdded == 0)
            return;

        // 如果当前map的数组还未初始化,先初始化
        if (table == EMPTY_TABLE) {
            inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));
        }

        /*
         * Expand the map if the map if the number of mappings to be added
         * is greater than or equal to threshold.  This is conservative; the
         * obvious condition is (m.size() + size) >= threshold, but this
         * condition could result in a map with twice the appropriate capacity,
         * if the keys to be added overlap with the keys already in this map.
         * By using the conservative calculation, we subject ourself
         * to at most one extra resize.
         * 如果指定map的元素个数大于当前map的阈值则扩容当前map。
         * 这是保守的,明显的条件应该是指定map的大小+当前map的大小的和是否 >= 阈值,
         * 但是这个条件可能导致当前map有两倍的合适的容量,因为有可能有些key已经存在当前map中。
         * 使用保守的计算,我们控制自己最多一个额外的扩容。
         */
        if (numKeysToBeAdded > threshold) {
            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
            if (targetCapacity > MAXIMUM_CAPACITY)
                targetCapacity = MAXIMUM_CAPACITY;
            int newCapacity = table.length;
            while (newCapacity < targetCapacity)
                newCapacity <<= 1;
            if (newCapacity > table.length)
                resize(newCapacity);
        }

        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
            put(e.getKey(), e.getValue());
    }

    /**
     * Removes the mapping for the specified key from this map if present.
     * 如果map中存在指定key的话则删除该key的映射。
     *
     * @param  key key whose mapping is to be removed from the map
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     *         返回指定key的旧值,如果返回null,可能表示没有该key,也可能表示该key的值就是null。
     */
    public V remove(Object key) {
        Entry<K,V> e = removeEntryForKey(key);
        return (e == null ? null : e.value);
    }

    /**
     * Removes and returns the entry associated with the specified key
     * in the HashMap.  Returns null if the HashMap contains no mapping
     * for this key.
     * 删除指定key,并返回对应的entry。
     * 如果没有指定key,则返回null。
     */
    final Entry<K,V> removeEntryForKey(Object key) {
        if (size == 0) {
            return null;
        }
        int hash = (key == null) ? 0 : hash(key);
        int i = indexFor(hash, table.length);
        // 链表中的前一个节点
        Entry<K,V> prev = table[i];
        // 链表中遍历的当前节点
        Entry<K,V> e = prev;

        while (e != null) {
            // 当前节点的下一个节点
            Entry<K,V> next = e.next;
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k)))) {
                modCount++;
                size--;
                // 找到指定key,如果前一个节点等于当前节点,表示是头节点,则将下一个节点作为新的头结点,否则将前一个节点的next指针指向当前节点的next
                if (prev == e)
                    table[i] = next;
                else
                    prev.next = next;
                e.recordRemoval(this);
                return e;
            }
            prev = e;
            e = next;
        }

        return e;
    }

    /**
     * Special version of remove for EntrySet using {@code Map.Entry.equals()}
     * for matching.
     * EntrySet特殊版本的删除,使用Map.Entry.equals()进行匹配
     */
    final Entry<K,V> removeMapping(Object o) {
        if (size == 0 || !(o instanceof Map.Entry))
            return null;

        Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
        Object key = entry.getKey();
        int hash = (key == null) ? 0 : hash(key);
        int i = indexFor(hash, table.length);
        Entry<K,V> prev = table[i];
        Entry<K,V> e = prev;

        while (e != null) {
            Entry<K,V> next = e.next;
            if (e.hash == hash && e.equals(entry)) {
                modCount++;
                size--;
                if (prev == e)
                    table[i] = next;
                else
                    prev.next = next;
                e.recordRemoval(this);
                return e;
            }
            prev = e;
            e = next;
        }

        return e;
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     * 清空map,用null填充数组,大小设置为0
     */
    public void clear() {
        modCount++;
        Arrays.fill(table, null);
        size = 0;
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the
     * specified value.
     * 如果map中至少有一个key的value是指定的value,则返回true
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true</tt> if this map maps one or more keys to the
     *         specified value
     */
    public boolean containsValue(Object value) {
        if (value == null)
            return containsNullValue();

        Entry[] tab = table;
        // 遍历数组
        for (int i = 0; i < tab.length ; i++)
            // 遍历数组中每一个位置的链表,只要有一个value与指定的value相等,则返回true,否则返回false
            for (Entry e = tab[i] ; e != null ; e = e.next)
                if (value.equals(e.value))
                    return true;
        return false;
    }

    /**
     * Special-case code for containsValue with null argument
     * 是否包含null的value的特殊方法
     */
    private boolean containsNullValue() {
        Entry[] tab = table;
        // 遍历数组
        for (int i = 0; i < tab.length ; i++)
            // 遍历数组中每一个位置的链表,只要有一个value是null,则返回true;否则返回false
            for (Entry e = tab[i] ; e != null ; e = e.next)
                if (e.value == null)
                    return true;
        return false;
    }

    /**
     * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
     * values themselves are not cloned.
     * 返回当前map的浅拷贝,key和value与当前map中是同一个引用
     *
     * @return a shallow copy of this map
     */
    public Object clone() {
        HashMap<K,V> result = null;
        try {
            result = (HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
            // assert false;
        }
        if (result.table != EMPTY_TABLE) {
            result.inflateTable(Math.min(
                (int) Math.min(
                    size * Math.min(1 / loadFactor, 4.0f),
                    // we have limits...
                    HashMap.MAXIMUM_CAPACITY),
               table.length));
        }
        result.entrySet = null;
        result.modCount = 0;
        result.size = 0;
        result.init();
        result.putAllForCreate(this);

        return result;
    }

    static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next;
        int hash;

        /**
         * Creates new entry.
         */
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }

        public final K getKey() {
            return key;
        }

        public final V getValue() {
            return value;
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object k1 = getKey();
            Object k2 = e.getKey();
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();
                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }
            return false;
        }

        public final int hashCode() {
            return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
        }

        public final String toString() {
            return getKey() + "=" + getValue();
        }

        /**
         * This method is invoked whenever the value in an entry is
         * overwritten by an invocation of put(k,v) for a key k that's already
         * in the HashMap.
         */
        void recordAccess(HashMap<K,V> m) {
        }

        /**
         * This method is invoked whenever the entry is
         * removed from the table.
         */
        void recordRemoval(HashMap<K,V> m) {
        }
    }

    /**
     * Adds a new entry with the specified key, value and hash code to
     * the specified bucket.  It is the responsibility of this
     * method to resize the table if appropriate.
     * 用指定的key、value、hash code新增一个新的节点到指定的位置。
     * 如果合适的话,扩容数组是这个方法的责任。
     *
     * Subclass overrides this to alter the behavior of put method.
     * 子类重写这个方法可以改变put方法的行为。
     */
    void addEntry(int hash, K key, V value, int bucketIndex) {
        // jdk7中扩容数组需要两个条件:当前map实际大小 >= 阈值,并且新节点将要插入数组中的位置已经有元素了。
        // 先扩容再插入新节点
        if ((size >= threshold) && (null != table[bucketIndex])) {
            // 数组扩容为之前的两倍,保证始终是2的幂次方
            resize(2 * table.length);
            // 重新计算hash值
            hash = (null != key) ? hash(key) : 0;
            // 重新计算在新数组中的位置
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);
    }

    /**
     * Like addEntry except that this version is used when creating entries
     * as part of Map construction or "pseudo-construction" (cloning,
     * deserialization).  This version needn't worry about resizing the table.
     * 与 addEntry 类似,只是在创建条目作为 Map 构造或“伪构造”的一部分时使用此版本。
     * 这个版本不需要担心扩容数组。
     *
     * Subclass overrides this to alter the behavior of HashMap(Map),
     * clone, and readObject.
     * 子类重写这个方法去改变HashMap(Map), clone, and readObject 方法的行为。
     */
    void createEntry(int hash, K key, V value, int bucketIndex) {
        // 先获取数组中指定位置的元素(头节点)
        Entry<K,V> e = table[bucketIndex];
        // 采用头插法,创建新节点并将之前的头节点作为next,新节点作为新的头结点放到数组中的指定位置。
        table[bucketIndex] = new Entry<>(hash, key, value, e);
        size++;
    }

    private abstract class HashIterator<E> implements Iterator<E> {
        Entry<K,V> next;        // next entry to return
        int expectedModCount;   // For fast-fail
        int index;              // current slot
        Entry<K,V> current;     // current entry

        HashIterator() {
            expectedModCount = modCount;
            if (size > 0) { // advance to first entry
                Entry[] t = table;
                while (index < t.length && (next = t[index++]) == null)
                    ;
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Entry<K,V> nextEntry() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();

            if ((next = e.next) == null) {
                Entry[] t = table;
                while (index < t.length && (next = t[index++]) == null)
                    ;
            }
            current = e;
            return e;
        }

        public void remove() {
            if (current == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            Object k = current.key;
            current = null;
            HashMap.this.removeEntryForKey(k);
            expectedModCount = modCount;
        }
    }

    private final class ValueIterator extends HashIterator<V> {
        public V next() {
            return nextEntry().value;
        }
    }

    private final class KeyIterator extends HashIterator<K> {
        public K next() {
            return nextEntry().getKey();
        }
    }

    private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
        public Map.Entry<K,V> next() {
            return nextEntry();
        }
    }

    // Subclass overrides these to alter behavior of views' iterator() method
    Iterator<K> newKeyIterator()   {
        return new KeyIterator();
    }
    Iterator<V> newValueIterator()   {
        return new ValueIterator();
    }
    Iterator<Map.Entry<K,V>> newEntryIterator()   {
        return new EntryIterator();
    }


    // Views

    private transient Set<Map.Entry<K,V>> entrySet = null;

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own <tt>remove</tt> operation), the results of
     * the iteration are undefined.  The set supports element removal,
     * which removes the corresponding mapping from the map, via the
     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
     * operations.
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        return (ks != null ? ks : (keySet = new KeySet()));
    }

    private final class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
            return newKeyIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            return HashMap.this.removeEntryForKey(o) != null;
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  If the map is
     * modified while an iteration over the collection is in progress
     * (except through the iterator's own <tt>remove</tt> operation),
     * the results of the iteration are undefined.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
     * support the <tt>add</tt> or <tt>addAll</tt> operations.
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        return (vs != null ? vs : (values = new Values()));
    }

    private final class Values extends AbstractCollection<V> {
        public Iterator<V> iterator() {
            return newValueIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own <tt>remove</tt> operation, or through the
     * <tt>setValue</tt> operation on a map entry returned by the
     * iterator) the results of the iteration are undefined.  The set
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
     * <tt>clear</tt> operations.  It does not support the
     * <tt>add</tt> or <tt>addAll</tt> operations.
     *
     * @return a set view of the mappings contained in this map
     */
    public Set<Map.Entry<K,V>> entrySet() {
        return entrySet0();
    }

    private Set<Map.Entry<K,V>> entrySet0() {
        Set<Map.Entry<K,V>> es = entrySet;
        return es != null ? es : (entrySet = new EntrySet());
    }

    private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return newEntryIterator();
        }
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<K,V> e = (Map.Entry<K,V>) o;
            Entry<K,V> candidate = getEntry(e.getKey());
            return candidate != null && candidate.equals(e);
        }
        public boolean remove(Object o) {
            return removeMapping(o) != null;
        }
        public int size() {
            return size;
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    /**
     * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
     * serialize it).
     *
     * @serialData The <i>capacity</i> of the HashMap (the length of the
     *             bucket array) is emitted (int), followed by the
     *             <i>size</i> (an int, the number of key-value
     *             mappings), followed by the key (Object) and value (Object)
     *             for each key-value mapping.  The key-value mappings are
     *             emitted in no particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws IOException
    {
        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();

        // Write out number of buckets
        if (table==EMPTY_TABLE) {
            s.writeInt(roundUpToPowerOf2(threshold));
        } else {
           s.writeInt(table.length);
        }

        // Write out size (number of Mappings)
        s.writeInt(size);

        // Write out keys and values (alternating)
        if (size > 0) {
            for(Map.Entry<K,V> e : entrySet0()) {
                s.writeObject(e.getKey());
                s.writeObject(e.getValue());
            }
        }
    }

    private static final long serialVersionUID = 362498820763181265L;

    /**
     * Reconstitute the {@code HashMap} instance from a stream (i.e.,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
         throws IOException, ClassNotFoundException
    {
        // Read in the threshold (ignored), loadfactor, and any hidden stuff
        s.defaultReadObject();
        if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
            throw new InvalidObjectException("Illegal load factor: " +
                                               loadFactor);
        }

        // set other fields that need values
        table = (Entry<K,V>[]) EMPTY_TABLE;

        // Read in number of buckets
        s.readInt(); // ignored.

        // Read number of mappings
        int mappings = s.readInt();
        if (mappings < 0)
            throw new InvalidObjectException("Illegal mappings count: " +
                                               mappings);

        // capacity chosen by number of mappings and desired load (if >= 0.25)
        int capacity = (int) Math.min(
                    mappings * Math.min(1 / loadFactor, 4.0f),
                    // we have limits...
                    HashMap.MAXIMUM_CAPACITY);

        // allocate the bucket array;
        if (mappings > 0) {
            inflateTable(capacity);
        } else {
            threshold = capacity;
        }

        init();  // Give subclass a chance to do its thing.

        // Read the keys and values, and put the mappings in the HashMap
        for (int i = 0; i < mappings; i++) {
            K key = (K) s.readObject();
            V value = (V) s.readObject();
            putForCreate(key, value);
        }
    }

    // These methods are used when serializing HashSets
    int   capacity()     { return table.length; }
    float loadFactor()   { return loadFactor;   }
}

Integer.highestOneBit(int i)方法

    /**
     * Returns an {@code int} value with at most a single one-bit, in the
     * position of the highest-order ("leftmost") one-bit in the specified
     * {@code int} value.  Returns zero if the specified value has no
     * one-bits in its two's complement binary representation, that is, if it
     * is equal to zero.
     *
     * @return an {@code int} value with a single one-bit, in the position
     *     of the highest-order one-bit in the specified value, or zero if
     *     the specified value is itself equal to zero.
     * @since 1.5
     * 
     * 返回小于等于i的最大的2的幂次方,
     * Integer.highestOneBit(15) -> 8
     * Integer.highestOneBit(16) -> 16
     * Integer.highestOneBit(17) -> 16
     */
    public static int highestOneBit(int i) {
        // HD, Figure 3-1
        i |= (i >>  1);
        i |= (i >>  2);
        i |= (i >>  4);
        i |= (i >>  8);
        i |= (i >> 16);
        return i - (i >>> 1);
    }
上一篇下一篇

猜你喜欢

热点阅读