深度学习

验证方法

2019-03-13  本文已影响0人  庵下桃花仙

留出验证集

x_val = x_train[:1000]
partial_x_train = x_train[1000:]

y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]

训练模型

history = model.fit(partial_x_train,
                    partial_y_train,
                    epochs=20,
                    batch_size=512,
                    validation_data=(x_val, y_val))

绘制训练损失和验证损失

import matplotlib.pyplot as plt

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(loss)+ 1)

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()
训练损失和验证损失.png

绘制训练精度和验证精度

plt.clf() # 清空图像

acc = history.history['acc']
val_acc = history.history['val_acc']

plt.plot(epochs, acc, 'ro', label='Training acc')
plt.plot(epochs, val_acc, 'r', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.show()
训练精度和验证精度.png

可以看出在第9轮之后开始过拟合。

重新开始训练一个模型

model.fit(x_train,
          one_hot_train_labels,
          epochs=9,
          batch_size=512
          )
results = model.evaluate(x_test, one_hot_test_labels)

print(results)
[0.9613658222680843, 0.7902938557966204]

字数不够,哈哈来凑!哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈

上一篇 下一篇

猜你喜欢

热点阅读