机器学习-算法理论

Functional & Calculus of variati

2021-05-18  本文已影响0人  shudaxu

Fcuntional

普通形式:
F(\rho) = \rho(x_0)
定积分形式:
F(\rho) = \int f(x, \rho,\rho', \rho'',...)dx

Functional derivatives[2]

泛函极值条件 Weak Extrema of Functional

函数中最小值的条件:一阶导数为0是必要非充分的,且极值点二阶导数非负,此时是充要的。
类似地,可以通过二阶变分[7] 得到泛函极小值的条件:
Necessary:\delta F=0
Sufficient:\delta F(\rho_0) = 0且在该点处,\delta^2F(\rho_0) strongly positive[8]
相关条件以及证明见Refer[8]

边界条件 Natural boundary condition

Essential boundary conditions are imposed explicitly on the solution but natural boundary conditions are automatically satisfied after solution of the problem.
在没有端点固定的问题中。
1、需要满足除了EL-equation:一阶变分为0条件见上述式子(7)。这个逻辑非常天然符合直觉,即\rho_0(x)使得问题取得极值的话,肯定也满足在其边界固定的问题中的极值条件。
2、还需要满足:\frac {\partial f}{\partial \r'} \bigg |_{x=x_0} = 0以及\frac {\partial f}{\partial \r'} \bigg |_{x= x_1} = 0
否则,泛函不可能取得极值。由于这个条件是在求变分极值过程中得到的条件,所以是自然边界条件。

Other

微积分演变
https://www.zhihu.com/question/27926053/answer/1017772036?utm_source=wechat_session

E-L equation
https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
推导:
https://math.stackexchange.com/questions/1885316/functional-derivative-how-to-obtain-delta-f-int-frac-delta-f-delta-f-de
https://www.cnblogs.com/bigmonkey/p/9519387.html

变分法(Calculus of Variations(variational method)):
https://baike.baidu.com/item/%E5%8F%98%E5%88%86%E6%B3%95/83603
https://en.wikipedia.org/wiki/Calculus_of_variations
https://zhuanlan.zhihu.com/p/20718489

思考,Functionals 与Cost Function
https://stats.stackexchange.com/questions/158348/can-a-neural-network-learn-a-functional-and-its-functional-derivative
以及Functional Gradient Descent
cost function本身,也可以当作是一个functional?我们用它来最优化得到最终的function。

Refer:

[1]
\deltad的差异:
https://math.stackexchange.com/questions/317338/differentiation-using-d-or-delta
d stands for the exact differential 一般用在math中
\delta refers to an inexact differential 一般用在physics中,inexact differentials

[2]
泛函
Functionals and the Functional Derivative
泛函导数,定义与计算方法:
见Doc:Functional Derivative
见:http://julian.tau.ac.il/bqs/functionals/node1.html
理解为方向导数见:https://bjlkeng.github.io/posts/the-calculus-of-variations/

[3]
https://en.wikipedia.org/wiki/Differential_of_a_function#Differentials_in_several_variables
involving the [partial derivative] of y with respect to x, The sum of the partial differentials with respect to all of the independent variables is the total differential

[4]
TODO(有关Radon-Nikodym定理,测度理论)

[5]
https://en.wikipedia.org/wiki/Functional_derivative
见 Determining functional derivatives中“An analogous application of the definition of the functional derivative yields”

[6]
https://en.wikipedia.org/wiki/Functional_derivative
见Properties

[7]:
Second Variation二阶变分。
https://encyclopediaofmath.org/wiki/Second_variation#:~:text=a%20sufficient%2C%20condition%20(under%20certain,at%20the%20point%20x0.&text=(the%20derivatives%20are%20evaluated%20at,x0(t)).

[8]
见:
1、https://en.wikipedia.org/wiki/Calculus_of_variations#Variations_and_sufficient_condition_for_a_minimum中的Variations and sufficient condition for a minimum
2、Notes on Sufficient Conditions for Extrema
3、https://math.stackexchange.com/questions/3155772/difficulty-understanding-sufficient-conditions-for-weak-extrema-in-calculus-of-v

[9]
1、见:https://math.stackexchange.com/questions/3315027/what-are-natural-boundary-conditions-in-the-calculus-of-variations
2、变分原理(Doc)中的自然边界条件。

上一篇下一篇

猜你喜欢

热点阅读