Leetcode1294. 不同国家的天气类型(简单)

2020-07-21  本文已影响0人  kaka22

题目
国家表:Countries

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| country_id    | int     |
| country_name  | varchar |
+---------------+---------+

country_id 是这张表的主键。
该表的每行有 country_id 和 country_name 两列。

天气表:Weather

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| country_id    | int     |
| weather_state | varchar |
| day           | date    |
+---------------+---------+

(country_id, day) 是该表的复合主键。
该表的每一行记录了某个国家某一天的天气情况。

写一段 SQL 来找到表中每个国家在 2019 年 11 月的天气类型。

天气类型的定义如下:当 weather_state 的平均值小于或等于15返回 Cold,当 weather_state 的平均值大于或等于 25 返回 Hot,否则返回 Warm。

你可以以任意顺序返回你的查询结果。

查询结果格式如下所示:

Countries table:

+------------+--------------+
| country_id | country_name |
+------------+--------------+
| 2          | USA          |
| 3          | Australia    |
| 7          | Peru         |
| 5          | China        |
| 8          | Morocco      |
| 9          | Spain        |
+------------+--------------+

Weather table:

+------------+---------------+------------+
| country_id | weather_state | day        |
+------------+---------------+------------+
| 2          | 15            | 2019-11-01 |
| 2          | 12            | 2019-10-28 |
| 2          | 12            | 2019-10-27 |
| 3          | -2            | 2019-11-10 |
| 3          | 0             | 2019-11-11 |
| 3          | 3             | 2019-11-12 |
| 5          | 16            | 2019-11-07 |
| 5          | 18            | 2019-11-09 |
| 5          | 21            | 2019-11-23 |
| 7          | 25            | 2019-11-28 |
| 7          | 22            | 2019-12-01 |
| 7          | 20            | 2019-12-02 |
| 8          | 25            | 2019-11-05 |
| 8          | 27            | 2019-11-15 |
| 8          | 31            | 2019-11-25 |
| 9          | 7             | 2019-10-23 |
| 9          | 3             | 2019-12-23 |
+------------+---------------+------------+

Result table:

+--------------+--------------+
| country_name | weather_type |
+--------------+--------------+
| USA          | Cold         |
| Austraila    | Cold         |
| Peru         | Hot          |
| China        | Warm         |
| Morocco      | Hot          |
+--------------+--------------+

USA 11 月的平均 weather_state 为 (15) / 1 = 15 所以天气类型为 Cold。
Australia 11 月的平均 weather_state 为 (-2 + 0 + 3) / 3 = 0.333 所以天气类型为 Cold。
Peru 11 月的平均 weather_state 为 (25) / 1 = 25 所以天气类型为 Hot。
China 11 月的平均 weather_state 为 (16 + 18 + 21) / 3 = 18.333 所以天气类型为 Warm。
Morocco 11 月的平均 weather_state 为 (25 + 27 + 31) / 3 = 27.667 所以天气类型为 Hot。
我们并不知道 Spain 在 11 月的 weather_state 情况所以无需将他包含在结果中。

解答
选出2019年11月的天气情况

select *
from Weather as W
where year(W.day) = 2019 and month(W.year) = 11

两表连接

select tmp.country_name, 
if(avg(tmp.weather_state)<=15, 'Cold',if(avg(tmp.weather_state)>=25, 'Hot', 'Warm'))
from Countries as C
join (select *
from Weather as W
where year(W.day) = 2019 and month(W.year) = 11) as tmp
on C.country_id = tmp. country_id
group by tmp.country_name;

别的解答
思路都是类似的 只是先筛选 先连接的区别

select country_name, 
case when avg(weather_state)<= 15 then 'Cold'
    when avg(weather_state)>= 25 then 'Hot' 
    else 'Warm'
end as weather_type
from countries c
join weather w 
on c.country_id=w.country_id
where day like'2019-11%'  
group by country_name;

select c.country_name,
if(avg_wea<= 15,'Cold',if(avg_wea<25,'Warm','Hot')) as weather_type
from 
(select  country_id,avg(weather_state) as avg_wea from Weather
where day between '2019-11-01' and '2019-11-30'
group by country_id) as w
left join Countries c 
on w.country_id = c.country_id;
上一篇 下一篇

猜你喜欢

热点阅读