Android开发计算机网络Android开发

自顶向下 | 带你遨游运输层

2020-03-18  本文已影响0人  许朋友爱玩

前言

本文已经收录到我的Github个人博客,欢迎大佬们光临寒舍:

我的GIthub博客

学习导图:

学习导图

一.运输层概述

Q1:运输层和网络层的关系

举个例子来说明两者关系:

有两个家庭,一家位于广州,一家位于北京,每家有 3个孩子。这两个家庭的孩子们喜欢彼此通信,每封信都用单独的信封通过传统的邮政服务发送。每个家庭有一个孩子负责收发邮件,北京家庭是 阿京,而广州家庭是 阿州。每周阿京去她所有的兄弟姐妹那里收集邮件,并将这些邮件交到邮递员处上。当信件到达北京家庭时,阿京也负责将信件发到她的兄弟姐妹手上,广州家庭中 阿州也负责类似工作

通过运输层协议,两台电脑仿佛直接相连一样。应用无需知道底层内部实现的原理和细节,比如怎么把远隔世界两地电脑上的数据进行相互传输

Q2:注意点

二.多路复用与多路分解

用上面的两个家庭的例子进行形象化地阐述就是:多路复用就是阿州和阿京将兄弟姐妹的信一起交给邮递员

Q1:如何使用运输层的协议?

操作系统提供了被称为 socket 的接口 api 供编程人员调用,对 socket 的形象理解是其是一种抽象,将复杂的实现 (tcp/udp) 协议的各种行为抽形成简单的几个函数给开发人员使用。就像浏览器将发送请求报文这一 http 协议规定的行为,抽象成我们只需要输入 url 然后回车即可

这里需要注意的一点是:

  • TCP 是面向连接的,其有足够状态的信息来分辨数据来源,后定向到正确的 socket
  • UDP 不需要维持连接,仅仅通过端口号来决定数据的去向,所以会导致冲突

三.UDPTCP的多路复用和分解

Q1:UDP的多路复用和分解

一个 UDP Socket 通过一个二元组 (目的 IP 地址,目的端口号) 来标识,当输入层收到数据时,通过检查这个二元组,来定向数据该去往哪一个 UDP Socket。这也是多个 UDP Socket 无法监听同一个端口的原因

Q2:TCP 的多路复用分解

一个 TCP Socket 通过一个四元组 (源 IP,源端口,目的 IP,目的端口号) 来标识,这也解释为什么多个 TCP Socket 可以监听同一个端口,尽管目的 IP和目的端口号是一样的,但是源 IP和源端口的组合总是不同的

TCP UDP Socket对比

四.UDP

4.1 UDP基本概念

相比于 TCP来讲,UDP是一个简单的协议,就是把网络层 IP 提供的服务封装了下,实现了多路复用和分解,提供了端到端进程间的通信和错误检验服务

相对于 TCP 来说:

缺点:

优点:

UDP报文端结构:

UDP 报文段结构

4.2 可靠数据传输

Q1:数据传输可能遇到的问题:

Q2:解决方法:

Q3:如何在保证可靠性的前提下,提高其性能?

引入流水线导致了:

Q4:如何处理分组丢失、损坏的问题

A.回退 N

B.选择重传

五.TCP

5.1 TCP基本概念

A.特点:

B.报文段结构

TCP报文段结构

部分参数解释:

5.2 可靠数据传输

  • 不会丢弃乱序到达的分组,而是缓存起来
  • 采用累计性 ACK
  • 只会重传丢失报文段中的数据

5.3 流量控制

接受窗口 (rwnd) 公式:

5.4 TCP 连接管理

Q1:建立连接(三次握手)

三次握手
  1. 客户端发送 SYN 位置 1 的报文段
  2. 服务端返回 SYN 为 1,ACK 为 1 的报文段
  3. 客户端发送 ACK 为 1,且附带数据的报文段

形象化地理解:

TCP 三次握手就好比两个人在街上隔着50米看见了对方,但是因为雾霾等原因不能100%确认,所以要通过招手的方式相互确定对方是否认识自己。

张三首先向李四招手(syn),李四看到张三向自己招手后,向对方点了点头挤出了一个微笑(ack)。张三看到李四微笑后确认了李四成功辨认出了自己(进入estalished状态)

但是李四还有点狐疑,向四周看了一看,有没有可能张三是在看别人呢,他也需要确认一下。所以李四也向张三招了招手(syn),张三看到李四向自己招手后知道对方是在寻求自己的确认,于是也点了点头挤出了微笑(ack),李四看到对方的微笑后确认了张三就是在向自己打招呼(进入established状态)。

于是两人加快步伐,走到了一起,相互拥抱

张三李四

Q2:断开连接(四次挥手)

四次挥手
  1. 客户发送 FIN 为 1 的报文段
  2. 服务端返回 ACK 为 1 的报文段
  3. 服务端发送 FIN 为 1 的报文段
  4. 客户端返回 ACK 为 1 的报文段
  5. 客户端在一段时间后,关闭连接

形象化地理解:

张三挥手(fin)——李四伤感地微笑(ack)——李四挥手(fin)——张三伤感地微笑

六.拥塞控制

Q1:拥塞的代价

Q2:TCP 的拥塞控制

  1. 一个 TCP 的发送方如何限制自己的发送流量的速率?

通过设置一个拥塞窗口 (cwnd), 并且保证:LastByteSent - LastByteAcked <= min{cwnd, rwnd}

  1. 如何感知其发送路径拥塞了?
  1. 感到拥塞时,采用什么样的算法改变发送速率?

cwnd 的值从 1 MSS 开始,并且对每一个 ACKcwnd 值变为原来的 2 倍,直到超过阈值 (ssthresh),转为拥塞避免模式

在每一个 RRT 时间,cwnd 的值增加一个 MSS

cwnd 的值降为一半加上重复收到的重复 ACK 的数量,并且每一个 ACKcwnd 的值增加一个 MSS

在实践中,一旦 timeout 就会会到慢启动的状态,多次重复 ACK 则会进入快速恢复状态

Q3:TCP 公平

TCP 的公平性在于保证每个连接的吞吐量是平均的,而不是应用或进程间

七.再谈握手和挥手

7.1 为啥一定要三次握手,两次不行吗?

弄清这个问题,我们需要先弄明白三次握手的目的是什么,能不能只用两次握手来达到同样的目的。

因此,需要三次握手才能确认双方的接收与发送能力是否正常。

试想如果是用两次握手,可能会出现下面这种情况:

如客户端发出连接请求,但因连接请求报文丢失而未收到确认,于是客户端再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接,客户端共发出了两个连接请求报文段,其中第一个丢失,第二个到达了服务端,但是第一个丢失的报文段只是在某些网络结点长时间滞留了,延误到连接释放以后的某个时间才到达服务端,此时服务端误认为客户端又发出一次新的连接请求,于是就向客户端发出确认报文段,同意建立连接,不采用三次握手,只要服务端发出确认,就建立新的连接了,此时客户端忽略服务端发来的确认,也不发送数据,则服务端一致等待客户端发送数据,浪费资源

7.2 为啥挥手要四次?

这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACKSYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,所以服务端可以立即close,也可以发送一些数据给客户端后,再发送FIN报文给客户端来表示同意现在关闭连接,因此,服务端ACKFIN一般都会分开发送。


如果文章对您有一点帮助的话,希望您能点一下赞,您的点赞,是我前进的动力

本文参考链接:

上一篇 下一篇

猜你喜欢

热点阅读