廖雪峰 | 5.2 装饰器和偏函数

2022-04-20  本文已影响0人  苦哈哈的柠檬水

装饰器

1,装饰器定义:在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。本质上,decorator就是一个返回函数的高阶函数。
例子:假如要增强sum()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改sum()函数的定义,则可以使用“装饰器”(Decorator)
2,实例
(1)函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。函数对象有一个__name__属性,可以拿到函数的名字:

>>> def now():
...     print('2015-3-25')
...
>>> f = now
>>> f()
2015-3-25

>>> now.__name__
'now'
>>> f.__name__
'now'

(2)定义一个能打印日志的decorator,增强now()函数的功能,可以定义如下:

def log(func):
    def wrapper(*args, **kw):
        print('call %s():' % func.__name__)
        return func(*args, **kw)
    return wrapper

因为log是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:

@log
def now():
    print('2015-3-25')

>>> now()
call now():
2015-3-25
now = log(now)
def log(text):
    def decorator(func):
        def wrapper(*args, **kw):
            print('%s %s():' % (text, func.__name__))
            return func(*args, **kw)
        return wrapper
    return decorator
#3层嵌套的decorator用法
@log('execute')
def now():
    print('2015-3-25')
#结果
>>> now()
execute now():
2015-3-25
now = log('execute')(now)

语句剖析:首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。
(4)装饰器的属性复制:functools.wraps
经过decorator装饰之后的函数,它们的__name__已经从原来的'now'变成了'wrapper'

>>> now.__name__
'wrapper'

因为返回的那个wrapper()函数名字就是'wrapper',所以,需要把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。
所以,一个完整的decorator的写法如下:

#不带参数的decorator
import functools
def log(func):
    @functools.wraps(func)
    def wrapper(*args, **kw):
        print('call %s():' % func.__name__)
        return func(*args, **kw)
    return wrapper

#针对带参数的decorator
import functools
def log(text):
    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kw):
            print('%s %s():' % (text, func.__name__))
            return func(*args, **kw)
        return wrapper
    return decorator

3,练习一
问:请设计一个decorator,它可作用于任何函数上,并打印该函数的执行时间:

# -*- coding: utf-8 -*-
import time, functools
def metric(fn):
    @functools.wraps(fn)
    def wrapper(*arg, **kw):
        start = time.time()
        res = fn(*arg, **kw)
        print('%s executed in %s ms' % (fn.__name__, time.time()-start))
        return res
    return wrapper

# 测试
@metric
def fast(x, y):
    time.sleep(0.0012)
    return x + y;
@metric
def slow(x, y, z):
    time.sleep(0.1234)
    return x * y * z;
#执行函数
f = fast(11, 22)
s = slow(11, 22, 33)
if f != 33:
    print('测试失败!')
elif s != 7986:
    print('测试失败!')

4,练习二
问:请编写一个decorator,能在函数调用的前后打印出begin callend call的日志

?

5,练习三
问:写出一个@logdecorator,使它既支持不带参数打印日志的decorator,又支持带参数的可打印日志的decorator

import functools
def log(text):
    def decorator(fn):
        @functools.wraps(fn)
        def wrapper(*arg, **kw):
            if type(text) != str:
                print('execute %s(): ' %fn.__name__)
            else:
                print('%s %s(): ' %(text, fn.__name__))
            return fn(*arg, **kw)
        return wrapper
    if type(text) == str:
        return decorator
    else:
        return decorator(text)

@log
def f1():
    print('可以@log')

@log('execute')
def f2():
    print('可以@log()')

f1()
f2()

偏函数

1,偏函数(Partial function)
属于Python的functools模块的功能,通过设定参数的默认值,从而降低函数调用的难度
2,解释实例
int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换。如果传入base参数,就可以做N进制的转换:

>>> int('12345')
12345

>>> int('12345', base=8)
5349
>>> int('12345', 16)
74565

可以定义一个int2()的函数,默认把base=2传进去,也可以用functools.partial创建一个偏函数:

def int2(x, base=2):
    return int(x, base)

>>> import functools
>>> int2 = functools.partial(int, base=2)

>>> int2('1000000')
64
>>> int2('1000000', base=10)
1000000

>>> int2('1000000',10)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: int() takes at most 2 arguments (3 given)

3,创建偏函数时,实际上可以接收函数对象、*args**kw这3个参数,当传入:

int2 = functools.partial(int, base=2)

实际上固定了int()函数的关键字参数base,也就是:

int2('10010')
#相当于
kw = { 'base': 2 }
int('10010', **kw)

max()函数

max2 = functools.partial(max, 10)
max2(5, 6, 7)
#相当于
args = (10, 5, 6, 7)
max(*args)

>>> max2(5, 6, 7)
10
上一篇下一篇

猜你喜欢

热点阅读