高等代数

高等代数题选3:多项式(3)

2019-05-09  本文已影响1人  溺于恐

1.判别下列多项式有无重因式:

(1)f(x)=x^5-5x^4+7x^3-2x^2+4x-8

(2)f(x)=x^4+4x^2-4x-3

解:

(1)f(x)=x^5-5x^4+7x^3-2x^2+4x-8

f'(x)=5x^4-20x^3+21x^2-4x+4

\begin{array}{c|l|l|c}q_1(x)={1\over 5}x-{1\over 5}&x^5-5x^4+7x^3-2x^2+4x-8&5x^4-20x^3+21x^2-4x+4&q_2(x)=-{2\over 5}x-{15\over 4}\\ &x^5-4x^4+{21\over 5}x^3-{4\over 5}x&5x^4-{25\over 2}x^3+10x^2+30x& \\ \hline &-x^4+{14\over 5}x^3-{6\over 5}x^2+{16\over 5}x-8&-{15\over 2}x^3+31x^2-34x+4\\ &-x^4+4x^3-{21\over 5}x^2+{4\over 5}x-{4\over 5}&-{15\over 2}x^3+{75\over 4}x^2+15x-45& \\ \hline q_3(x)=-2x-3&-{6\over 5}x^3+{15\over 5}x^2+{12\over 5}x-{36\over 5}&{49\over 4}x^2-49x+49\\ &-2x^3+5x^2+4x-12& & \\ &-2x^3+8x^2-8x& & \\ \hline &-3x^2+12x-12& & \\ &-3x^2+12x-12& & \\ \hline &0\end{array}

\therefore (f(x),f'(x))=x^2-4x+4=(x-2)^2

\therefore f(x)3重因式x-2

(2)f(x)=x^4+4x^2-4x-3

f'(x)=4x^3+8x-4

\begin{array}{c|l|l|c}q_1(x)={1\over 4}x&x^4+4x^2-4x-3&4x^3+8x-4&q_2(x)=2x+3\\ &x^4+2x^2-x&4x^3-6x^2-6x& \\ \hline q_3(x)={2\over 23}x-{79\over 23^2}&r_1(x)=2x^2-3x-3&6x^2+14x-4\\ &2x^2+{10\over 23}x&6x^2-9x-9& \\ \hline &-{79\over 23}x-3&r_2(x)=23x+5\\ &-{79\over 23}x-{79\times 5 \over 23^2}\end{array}

\because {79\times 5 \over 23^2}-3\neq 0

\therefore (f(x),f'(x))=1

\therefore f(x)没有重因式


2.求t值使f(x)=x^3-3x^2+tx-1有重根

解:

f'(x)=3x^2-6x+t

f(x)有重根\Leftrightarrow f(x)f'(x)有公共根

f(x)=({1\over 3}x-{1\over 3})f'(x)+({2\over 3}t-2)x+{1\over 3}t-1

(1)若t=3,则

f(x)=({1\over 3}x-{1\over 3})f'(x)=(x-1)(x-1)^2

此时f(x)3重根1

(2)若t\neq 3,则

(f(x),f'(x))=(f'(x),({2\over 3}t-2)x+{1\over 3}t-1

=(f'(x),({t\over 3}-1)(2x+1))

f(x)有重根\Rightarrow (f(x),f'(x))\neq 1,

\therefore (f'(x),({t\over 3}-1)(2x+1))=x+{1\over 2}

f(x)2重根-{1\over 2}

此时f'(-{1\over 2})=0

3(-{1\over 2})^2-6(-{1\over 2})+t=0

解得t=-{15\over 4}

综上所述,t=3时,f(x)3重根1,t=-{15\over 4}时,f(x)2重根-{1\over 2}

法二:

f(x)=x^3-3x^2+tx-1

f'(x)=3x^2-6x+t

(1)令\Delta=36-12t=0,得t=3

(2)\Delta\gt 0,则

\begin{cases}x^3-3x^2+tx-1=0\qquad ①\\ 3x^2-6x+t=0\qquad ②\end{cases}有实数解​

x^2=2x-{1\over 3}t代入①可得​

x(2x-{1\over 3}t)-3(2x-{1\over 3}t)+tx-1=0

解得x=-{1\over 2},代入②可得

t=-{15\over 4}

综上所述,t=3t=-{15\over 4}时,f(x)有重根


3.求多项式x^3+px+q有重根的条件

解:

f(x)=x^3+px+q

f'(x)=3x^2+p

f(x)={1\over 3}xf'(x)+{2\over 3}px+q

(f(x),f'(x))=(f'(x),{2\over 3}px+q)

f(x)有重根\Rightarrow (f(x),f'(x))\neq 1

p=0,则q=0

p\neq 0,则

{2\over 3}px+q|f'(x)

f'(x)=({q\over 2p}x-{27q\over 4p^2})({2\over 3}px+q)+p+{27q\over 4p^2}

\therefore p+{27q\over 4p^2}=0

4p^3+27q^2=0

\therefore f(x)有重根的条件为4p^3+27q^2=0

法二:

x^3+px+q判别式\Delta=({q\over 2})^2+({p\over 3})^3

\Delta=0时,​

4p^3+27q^2=0

p=q=0,有一个3重零根

p,q\neq 0时,3个实根中有2重根


4.若(x-1)^2|Ax^4+Bx^2+1,求A,B

解:

Ax^4+Bx^2+1=(Ax^2+2Ax+b+3A)(x-1)^2+(4A+2B)x+(1-B-3A)

\because (x-1)^2|Ax^4+Bx^2+1

\therefore \begin{cases}4A+2B=0\\ 1-B-3A=0\end{cases}

解得A=1,B=-2

法二:

\because (x-1)^2|Ax^4+Bx^2+1

\therefore x-1|Ax^4+Bx^2+1

x-1|4Ax^3+2Bx

由余数定理可得​

\begin{cases}A+B+1=0\\ 4A+2B=0\end{cases}

解得A=1,B=-2


5.证明:1+x+{x^2\over 2!}+\cdots+{x^n\over n!}不能有重根

证:

f(x)=1+x+{x^2\over 2!}+\cdots+{x^n\over n!}

f'(x)=1+x+{x^2\over 2!}+\cdots+{x^{n-1}\over (n-1)!}=f(x)-{x^n\over n!}

f(x)=f'(x)+{x^n\over n!}

\therefore (f(x),f'(x))=(f'(x),{x^n\over n!})=1

\therefore f(x)不能有重根

上一篇下一篇

猜你喜欢

热点阅读