2020-02-14 Kitaev model on a hex

2020-02-14  本文已影响0人  低维量子系统

Kitaev model on the hexagonal lattice

这两天摈弃了所有杂念,踏踏实实学习Kitaev model。找到的一篇能够follow的文献是Chen在2008年发表的论文。



Hamiltonian

H=-J_x\sum_{x-links}\sigma_j^x\sigma_k^x-J_y\sum_{y-links}\sigma_j^y\sigma_k^y-J_z\sum_{z-links}\sigma_j^z\sigma_k^z

pauli operators
fermion operators

\{a^{\dagger}_j,a_j\}=1

\{a^{\dagger}_j,a_k\}=0

\{a_j,a_k\}=0

\{a^{\dagger}_j,a^{\dagger}_k\}=0

a_j^2=0

{a^{\dagger2}_j}=0

Jordan-Wigner transformation from spin operators to fermion operators

H=J_x\sum_{x-links}(c^{\dagger}_{\ell}- c_{\ell})\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})
-J_y\sum_{y-links}(c^{\dagger}_{\ell}+c_{\ell})\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})
-J_z\sum_{z-links}(2c^{\dagger}_{\ell}c_{\ell}-1)(2c^{\dagger}_{\ell+1}c_{\ell+1}-1)

H=J_x\sum_{x-links}(c^{\dagger}- c)_w\cdot(c^{\dagger}+c)_b
-J_y\sum_{y-links}(c^{\dagger}+c)_b\cdot(c^{\dagger}-c)_w
-J_z\sum_{z-links}(2c^{\dagger}c-1)_b(2c^{\dagger} c -1)_w ------(4)

Majorana fermions

For white sites,

A_w = \frac{1} {i}(c-c^{\dagger})_w

B_w = (c+c^{\dagger})_w

For black sites

B_b = \frac{1} {i}(c-c^{\dagger})_b

A_b = (c+c^{\dagger})_b

B_b A_b= \frac{1} {i}(c-c^{\dagger})_b(c+c^{\dagger})_b

=-i(c^2+cc^{\dagger}-c^{\dagger}c-c^{\dagger2})

=-i(cc^{\dagger}-c^{\dagger}c)

=-i(1-2c^{\dagger}c)

=i(2c^{\dagger}c-1)

J_x\sum_{x-links}(c^{\dagger}- c)_w\cdot(c^{\dagger}+c)_b

=J_x\sum_x (-iA_w) \cdot A_b

=-iJ_x\sum_x A_w \cdot A_b

-J_y\sum_{y-links}(c^{\dagger}+c)_b\cdot(c^{\dagger}-c)_w

=-J_y\sum_y A_b \cdot (-iA_w)

=iJ_y\sum_y A_b \cdot A_w

-J_z\sum_{z-links}(2c^{\dagger}c-1)_b(2c^{\dagger} c -1)_w

=-J_z\sum_z (B_b A_b)(B_w A_w)

=J_z\sum_z (B_b B_w) A_bA_w

=-iJ_z\sum_z (iB_b B_w) A_bA_w

=-iJ_z\sum_z \alpha_r A_bA_w

H\{\alpha\}=-iJ_x\sum_x A_w \cdot A_b+iJ_y\sum_y A_b \cdot A_w -iJ_z\sum_z \alpha_r A_bA_w

5.1 Diagonalization

d=(A_w+iA_b)/2

d^{\dagger}=(A_w-iA_b)/2

** 公式(18)的证明
上一篇下一篇

猜你喜欢

热点阅读