源码分析:Java中的Thread的创建和运行
在面试候选人的时候,我有时候会提出这样的一个问题:说说你对Java线程的理解?从这个问题开始,可以考察候选人对并发基础的掌握、对操作系统基本概念的理解,如果遇到对底层有浓厚兴趣的同学,我会抛出另一个问题:Java里的线程和操作系统的线程是什么关系?它们是如何对应的?这两个问题,就是今天这篇文章想讲述的。
基础知识
JVM中的线程是和OS中的线程一一对应的,操作系统负责调度所有的线程,因此在不同的平台上,Java线程的优先级有所不同。
在JVM中除了应用线程,还有其他的一些线程用于支持JVM的运行,这些线程可以被划分为以下几类:
- VM Thread:负责JVM在安全点内的各种操作,这些操作(诸如自动内存管理、取消偏向锁、线程dump、线程挂起等等)在执行过程中需要JVM处于这样一个状态——堆的内容不会被改变,这种状态在JVM里叫做安全点(safe-point)。
- Periodic task thread:这个线程负责响应定时触发的事件(例如:中断),用来执行一些定时操作。
- GC thread:这些线程负责JVM里的垃圾收集活动;
- Compiler threads:这些线程负责在运行时将字节码编译为本地代码;
- Singal dispatcher thread:这些线程负责响应外部发给当前JVM进程的信号,并通过调用JVM内的其他线程。
我们现在写一个简单的hello word程序,代码如下:
public class GcExample {
private static class E {
public static final int[] a = new int[1024 * 10];
}
public static void main(String[] args) {
System.out.println("hello world");
while (true) {
new E();
}
}
}
然后使用jmc(Java Mission Control)attach到这个程序上,展现为如下的情况:
jmc中看到的线程
- RMI开头的线程,负责JVM跟JMC客户端通信,吐出JVM内的运行信息;
- Attach Listener和Single Dispatcher两个线程,属于信号处理线程,负责接收外部到当前JVM的attach信号,并建立通信用的文件socket;
- Finalizer线程,用于处理Finalizer队列的线程,在Java中,如果一个对象重写了finalize()方法,那么JVM会为之创建一个对应的Finalizer对象,所有的Finzlizer对象会构成一个列表,由Finalizer线程统一处理
- Reference Handler,负责JVM中的引用处理
- main,我们例子中的业务线程。
我想你现在也有这个疑问——跟上面说的那个分类对不上,有些线程没看到,是的,可能是由于JMC的实现机制,这些线程没有被展示出来,我们再用jstack命令做一次线程dump,就可以得到如下内容:
Full thread dump Java HotSpot(TM) 64-Bit Server VM (25.151-b12 mixed mode):
"RMI TCP Connection(5)-192.168.0.139" #17 daemon prio=9 os_prio=31 tid=0x00007fba7c830800 nid=0x5c03 runnable [0x000070000f740000]
java.lang.Thread.State: RUNNABLE
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.socketRead(SocketInputStream.java:116)
at java.net.SocketInputStream.read(SocketInputStream.java:171)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
- locked <0x000000076f590708> (a java.io.BufferedInputStream)
at java.io.FilterInputStream.read(FilterInputStream.java:83)
at sun.rmi.transport.tcp.TCPTransport.handleMessages(TCPTransport.java:550)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run0(TCPTransport.java:826)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.lambda$run$0(TCPTransport.java:683)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler$$Lambda$3/745402377.run(Unknown Source)
at java.security.AccessController.doPrivileged(Native Method)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run(TCPTransport.java:682)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
"RMI TCP Connection(2)-192.168.0.139" #16 daemon prio=9 os_prio=31 tid=0x00007fba7e0b0000 nid=0xa403 in Object.wait() [0x000070000f63c000]
java.lang.Thread.State: TIMED_WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x000000076f580878> (a com.sun.jmx.remote.internal.ArrayNotificationBuffer)
at com.sun.jmx.remote.internal.ArrayNotificationBuffer.fetchNotifications(ArrayNotificationBuffer.java:449)
- locked <0x000000076f580878> (a com.sun.jmx.remote.internal.ArrayNotificationBuffer)
at com.sun.jmx.remote.internal.ArrayNotificationBuffer$ShareBuffer.fetchNotifications(ArrayNotificationBuffer.java:227)
at com.sun.jmx.remote.internal.ServerNotifForwarder.fetchNotifs(ServerNotifForwarder.java:274)
at javax.management.remote.rmi.RMIConnectionImpl$4.run(RMIConnectionImpl.java:1270)
at javax.management.remote.rmi.RMIConnectionImpl$4.run(RMIConnectionImpl.java:1268)
at javax.management.remote.rmi.RMIConnectionImpl.fetchNotifications(RMIConnectionImpl.java:1274)
at sun.reflect.GeneratedMethodAccessor62.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at sun.rmi.server.UnicastServerRef.dispatch(UnicastServerRef.java:357)
at sun.rmi.transport.Transport$1.run(Transport.java:200)
at sun.rmi.transport.Transport$1.run(Transport.java:197)
at java.security.AccessController.doPrivileged(Native Method)
at sun.rmi.transport.Transport.serviceCall(Transport.java:196)
at sun.rmi.transport.tcp.TCPTransport.handleMessages(TCPTransport.java:568)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run0(TCPTransport.java:826)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.lambda$run$0(TCPTransport.java:683)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler$$Lambda$3/745402377.run(Unknown Source)
at java.security.AccessController.doPrivileged(Native Method)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run(TCPTransport.java:682)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
"JMX server connection timeout 15" #15 daemon prio=9 os_prio=31 tid=0x00007fba80014800 nid=0xa503 in Object.wait() [0x000070000f53b000]
java.lang.Thread.State: TIMED_WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x000000076f5887f8> (a [I)
at com.sun.jmx.remote.internal.ServerCommunicatorAdmin$Timeout.run(ServerCommunicatorAdmin.java:168)
- locked <0x000000076f5887f8> (a [I)
at java.lang.Thread.run(Thread.java:748)
"RMI Scheduler(0)" #14 daemon prio=9 os_prio=31 tid=0x00007fba7c805800 nid=0xa603 waiting on condition [0x000070000f438000]
java.lang.Thread.State: TIMED_WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x000000076f598188> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject)
at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:215)
at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awaitNanos(AbstractQueuedSynchronizer.java:2078)
at java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThreadPoolExecutor.java:1093)
at java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThreadPoolExecutor.java:809)
at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1074)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1134)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
"RMI TCP Accept-0" #12 daemon prio=9 os_prio=31 tid=0x00007fba7d906000 nid=0xa803 runnable [0x000070000f232000]
java.lang.Thread.State: RUNNABLE
at java.net.PlainSocketImpl.socketAccept(Native Method)
at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
at java.net.ServerSocket.implAccept(ServerSocket.java:545)
at java.net.ServerSocket.accept(ServerSocket.java:513)
at sun.management.jmxremote.LocalRMIServerSocketFactory$1.accept(LocalRMIServerSocketFactory.java:52)
at sun.rmi.transport.tcp.TCPTransport$AcceptLoop.executeAcceptLoop(TCPTransport.java:400)
at sun.rmi.transport.tcp.TCPTransport$AcceptLoop.run(TCPTransport.java:372)
at java.lang.Thread.run(Thread.java:748)
"Attach Listener" #10 daemon prio=9 os_prio=31 tid=0x00007fba7d865800 nid=0xa903 waiting on condition [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"Service Thread" #9 daemon prio=9 os_prio=31 tid=0x00007fba7d803000 nid=0x3903 runnable [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"C1 CompilerThread3" #8 daemon prio=9 os_prio=31 tid=0x00007fba7e002000 nid=0x3803 waiting on condition [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"C2 CompilerThread2" #7 daemon prio=9 os_prio=31 tid=0x00007fba80000000 nid=0x3703 waiting on condition [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"C2 CompilerThread1" #6 daemon prio=9 os_prio=31 tid=0x00007fba7d82d800 nid=0x3e03 waiting on condition [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"C2 CompilerThread0" #5 daemon prio=9 os_prio=31 tid=0x00007fba7c020000 nid=0x3f03 waiting on condition [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"Signal Dispatcher" #4 daemon prio=9 os_prio=31 tid=0x00007fba7c01e800 nid=0x3403 runnable [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"Finalizer" #3 daemon prio=8 os_prio=31 tid=0x00007fba7f022000 nid=0x4903 in Object.wait() [0x000070000e917000]
java.lang.Thread.State: WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x000000076f5a0600> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:143)
- locked <0x000000076f5a0600> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:164)
at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:209)
"Reference Handler" #2 daemon prio=10 os_prio=31 tid=0x00007fba7c01d800 nid=0x4b03 in Object.wait() [0x000070000e814000]
java.lang.Thread.State: WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x000000076f5983e8> (a java.lang.ref.Reference$Lock)
at java.lang.Object.wait(Object.java:502)
at java.lang.ref.Reference.tryHandlePending(Reference.java:191)
- locked <0x000000076f5983e8> (a java.lang.ref.Reference$Lock)
at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:153)
"main" #1 prio=5 os_prio=31 tid=0x00007fba7f000000 nid=0x2303 runnable [0x000070000ddf6000]
java.lang.Thread.State: RUNNABLE
at GcExample.main(GcExample.java:9)
"VM Thread" os_prio=31 tid=0x00007fba7c01b000 nid=0x2f03 runnable
"GC task thread#0 (ParallelGC)" os_prio=31 tid=0x00007fba7c007000 nid=0x2007 runnable
"GC task thread#1 (ParallelGC)" os_prio=31 tid=0x00007fba7d804800 nid=0x2a03 runnable
"GC task thread#2 (ParallelGC)" os_prio=31 tid=0x00007fba7c007800 nid=0x5303 runnable
"GC task thread#3 (ParallelGC)" os_prio=31 tid=0x00007fba7f800000 nid=0x2c03 runnable
"GC task thread#4 (ParallelGC)" os_prio=31 tid=0x00007fba7d805000 nid=0x5103 runnable
"GC task thread#5 (ParallelGC)" os_prio=31 tid=0x00007fba7c013800 nid=0x5003 runnable
"GC task thread#6 (ParallelGC)" os_prio=31 tid=0x00007fba7f001000 nid=0x4e03 runnable
"GC task thread#7 (ParallelGC)" os_prio=31 tid=0x00007fba7c014000 nid=0x4c03 runnable
"VM Periodic Task Thread" os_prio=31 tid=0x00007fba7d858800 nid=0x3a03 waiting on condition
JNI global references: 295
OK,从上面这个dump文件中,可以找到Periodic Task Thread、GC Thread、VM Thread、Compiler Thread的身影了。
JVM源码分析
前面从概念和分类两个角度观察了JVM中的线程,现在我们从源码角度看下另一个问题,JVM是如何实现Java线程的。
java.lang.Thread
类的start接口,用来启动一个Java线程,然后JVM会执行run()方法中的内容,run()方法是Runnable接口定义然后在java.lang.Thread
中提供了实现方法,start()方法的内容如下:
/**
* Causes this thread to begin execution; the Java Virtual Machine
* calls the <code>run</code> method of this thread.
* <p>
* The result is that two threads are running concurrently: the
* current thread (which returns from the call to the
* <code>start</code> method) and the other thread (which executes its
* <code>run</code> method).
* <p>
* It is never legal to start a thread more than once.
* In particular, a thread may not be restarted once it has completed
* execution.
*
* @exception IllegalThreadStateException if the thread was already
* started.
* @see #run()
* @see #stop()
*/
public synchronized void start() {
/**
* This method is not invoked for the main method thread or "system"
* group threads created/set up by the VM. Any new functionality added
* to this method in the future may have to also be added to the VM.
*
* A zero status value corresponds to state "NEW".
*/
if (threadStatus != 0)
throw new IllegalThreadStateException();
/* Notify the group that this thread is about to be started
* so that it can be added to the group's list of threads
* and the group's unstarted count can be decremented. */
group.add(this);
boolean started = false;
try {
start0();
started = true;
} finally {
try {
if (!started) {
group.threadStartFailed(this);
}
} catch (Throwable ignore) {
/* do nothing. If start0 threw a Throwable then
it will be passed up the call stack */
}
}
}
private native void start0();
根据注释中说的,一个线程退出后是再次start是非法的,会抛出异常,我们可以用下面的代码验证下:
package org.java.learn.concurrent;
public class ThreadRestartExample {
public static void main(String[] args) throws InterruptedException {
Thread thread = new Thread(() -> {
System.out.println("hello");
});
thread.start();
Thread.sleep(1000);
thread.start();
}
}
运行这个代码的结果是:
hello
Exception in thread "main" java.lang.IllegalThreadStateException
at java.lang.Thread.start(Thread.java:708)
at org.java.learn.concurrent.ThreadRestartExample.main(ThreadRestartExample.java:18)
Process finished with exit code 1
start方法调用了start0方法,这是一个JNI接口,在Java中通过JNI接口可以实现Java调用本地方法;通过JVMTI接口可以实现在C++空间调用Java对象的方法。start0方法的实现在jdk/src/share/native/java/lang/Thread.c
中定义,代码如下所示:
static JNINativeMethod methods[] = {
{"start0", "()V", (void *)&JVM_StartThread},
{"stop0", "(" OBJ ")V", (void *)&JVM_StopThread},
{"isAlive", "()Z", (void *)&JVM_IsThreadAlive},
{"suspend0", "()V", (void *)&JVM_SuspendThread},
{"resume0", "()V", (void *)&JVM_ResumeThread},
{"setPriority0", "(I)V", (void *)&JVM_SetThreadPriority},
{"yield", "()V", (void *)&JVM_Yield},
{"sleep", "(J)V", (void *)&JVM_Sleep},
{"currentThread", "()" THD, (void *)&JVM_CurrentThread},
{"countStackFrames", "()I", (void *)&JVM_CountStackFrames},
{"interrupt0", "()V", (void *)&JVM_Interrupt},
{"isInterrupted", "(Z)Z", (void *)&JVM_IsInterrupted},
{"holdsLock", "(" OBJ ")Z", (void *)&JVM_HoldsLock},
{"getThreads", "()[" THD, (void *)&JVM_GetAllThreads},
{"dumpThreads", "([" THD ")[[" STE, (void *)&JVM_DumpThreads},
{"setNativeName", "(" STR ")V", (void *)&JVM_SetNativeThreadName},
};
JVM_StartThread的接口定义在jvm.h中,JDK中用到的jni接口,最终都会在jvm.h文件中定义,并在jvm.cpp中作为C++实现的入口,也就是说jvm.cpp是Java世界和JVM中C++世界沟通的桥梁。
/*
* java.lang.Thread
*/
JNIEXPORT void JNICALL
JVM_StartThread(JNIEnv *env, jobject thread);
JVM_StartThread的具体实现在jvm.cpp中,主要代码逻辑列举如下(本文主要是要看线程创建的逻辑,因此一些分支代码没有展示):
JVM_ENTRY(void, JVM_StartThread(JNIEnv* env, jobject jthread))
JVMWrapper("JVM_StartThread");
JavaThread *native_thread = NULL;
//……
//获取栈的大小
jlong size = java_lang_Thread::stackSize(JNIHandles::resolve_non_null(jthread));
//……
//栈的大小不能为负数
size_t sz = size > 0 ? (size_t) size : 0;
//通过new JavaThread新建os线程对象,这里thread_entry就是runnable的run方法。
native_thread = new JavaThread(&thread_entry, sz);
//……
Thread::start(native_thread);
JVM_END
JavaThread的构造方法实现时在thread.cpp文件中,做一些准备工作后,会通过os::create_thread(this, thr_type, stack_sz);
创建线程,os::create_thread的实现时跟具体平台有关的,如下图所示:
这里我们选择os_linux.cpp这个文件。os::create_thread的主要动作有几个:
- 通过
pthread_attr_init(&attr);
初始化线程的属性 - 通过
int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
创建os线程,这里最重要了,参见pthread_create手册,可以知道,第三个参数表示启动这个线程后要执行的方法的入口,第四个参数表示要给这个方法传入的参数。
这里我们看下java_start方法的实现(该方法也在thread.cpp中),在这个方法的入参是Thread指针;
// Thread start routine for all newly created threads
static void *java_start(Thread *thread) {
// Try to randomize the cache line index of hot stack frames.
// This helps when threads of the same stack traces evict each other's
// cache lines. The threads can be either from the same JVM instance, or
// from different JVM instances. The benefit is especially true for
// processors with hyperthreading technology.
static int counter = 0;
int pid = os::current_process_id();
alloca(((pid ^ counter++) & 7) * 128);
ThreadLocalStorage::set_thread(thread);
OSThread* osthread = thread->osthread();
Monitor* sync = osthread->startThread_lock();
// non floating stack LinuxThreads needs extra check, see above
if (!_thread_safety_check(thread)) {
// notify parent thread
MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
osthread->set_state(ZOMBIE);
sync->notify_all();
return NULL;
}
// thread_id is kernel thread id (similar to Solaris LWP id)
osthread->set_thread_id(os::Linux::gettid());
if (UseNUMA) {
int lgrp_id = os::numa_get_group_id();
if (lgrp_id != -1) {
thread->set_lgrp_id(lgrp_id);
}
}
// initialize signal mask for this thread
os::Linux::hotspot_sigmask(thread);
// initialize floating point control register
os::Linux::init_thread_fpu_state();
// handshaking with parent thread
{
MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
// notify parent thread
osthread->set_state(INITIALIZED);
sync->notify_all();
// wait until os::start_thread()
// 这里说明,新创建的os线程不会立即执行,会等os::start_thread()的通知,在后面我们马上会分析到。
while (osthread->get_state() == INITIALIZED) {
sync->wait(Mutex::_no_safepoint_check_flag);
}
}
// call one more level start routine
thread->run();
return 0;
}
在方法的最后,会通过thread->run();
调用JavaThread的run方法,然后再到JavaThread的thread_main_inner方法,
void JavaThread::thread_main_inner() {
assert(JavaThread::current() == this, "sanity check");
assert(this->threadObj() != NULL, "just checking");
// Execute thread entry point unless this thread has a pending exception
// or has been stopped before starting.
// Note: Due to JVM_StopThread we can have pending exceptions already!
if (!this->has_pending_exception() &&
!java_lang_Thread::is_stillborn(this->threadObj())) {
{
ResourceMark rm(this);
this->set_native_thread_name(this->get_thread_name());
}
HandleMark hm(this);
//注意:这里就是Java线程要执行的run方法
this->entry_point()(this, this);
}
DTRACE_THREAD_PROBE(stop, this);
this->exit(false);
delete this;
}
this->entry_point()(this, this);
这行的调用,就会执行java.lang.Thread中的run方法,那么这个entry_point是在哪里被设置到JavaThread对象中的呢,回顾上文,在jvm.cpp里有一个new JavaThread(&thread_entry,sz)的调用,是的,就是这里,thread_entry的具体实现是:
static void thread_entry(JavaThread* thread, TRAPS) {
HandleMark hm(THREAD);
Handle obj(THREAD, thread->threadObj());
JavaValue result(T_VOID);
JavaCalls::call_virtual(&result,
obj,
KlassHandle(THREAD, SystemDictionary::Thread_klass()),
vmSymbols::run_method_name(),
vmSymbols::void_method_signature(),
THREAD);
}
这段代码要做的事情就是在JVM的c++世界里,获取到对应的java.lang.Thread的对象,然后调用它的run方法。
再看下JVM_StartThread的逻辑,native_thread被创建后并不会立即被执行,而是出于初始化状态,后面还会执行Thread::start(native_thread);
代码,这是做了什么工作呢?
void Thread::start(Thread* thread) {
trace("start", thread);
// Start is different from resume in that its safety is guaranteed by context or
// being called from a Java method synchronized on the Thread object.
if (!DisableStartThread) {
if (thread->is_Java_thread()) {
// Initialize the thread state to RUNNABLE before starting this thread.
// Can not set it after the thread started because we do not know the
// exact thread state at that time. It could be in MONITOR_WAIT or
// in SLEEPING or some other state.
java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
java_lang_Thread::RUNNABLE);
}
os::start_thread(thread);
}
}
根据代码可知道,这个方法先将thread的状态设置为RUNNABLE,然后再调用os::start_thread(thread);
通知刚刚创建的os线程开始运行,具体的代码如下:
void os::start_thread(Thread* thread) {
// guard suspend/resume
MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
OSThread* osthread = thread->osthread();
osthread->set_state(RUNNABLE);
pd_start_thread(thread);
}
在这里pd_start_thread(具体实现在os_linux.cpp)就负责通知刚刚被创建的但是处于初始化状态的线程,代码如下:
void os::pd_start_thread(Thread* thread) {
OSThread * osthread = thread->osthread();
assert(osthread->get_state() != INITIALIZED, "just checking");
Monitor* sync_with_child = osthread->startThread_lock();
MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
sync_with_child->notify();
}
sync_with_child->notify();
这行代码就是用来通知线程开始运行的。
总结
这篇文章主要梳理了三个问题:(1)JVM中的线程模型是怎么样的,跟os中的线程一一对应;(2)JVM里常见的几类线程都有哪些?VM Thread、周期线程、Compiler 线程、GC线程、信号量处理线程;(3)当我们在java代码中执行start()方法的时候,JVM内部做了哪些事情?