IOS三人行iOS工作环境搭建iOS

iOS - dispatch_semaphore 和 NSCon

2016-06-15  本文已影响1066人  Cdream

GCD 信号量控制并发 (dispatch_semaphore)

当我们在处理一系列线程的时候,当数量达到一定量,在以前我们可能会选择使用NSOperationQueue来处理并发控制,但如何在GCD中快速的控制并发呢?答案就是dispatch_semaphore。
信号量是一个整形值并且具有一个初始计数值,并且支持两个操作:信号通知和等待。当一个信号量被信号通知,其计数会被增加。当一个线程在一个信号量上等待时,线程会被阻塞(如果有必要的话),直至计数器大于零,然后线程会减少这个计数。
在GCD中有三个函数是semaphore的操作,分别是:
1、dispatch_semaphore_create   创建一个semaphore
2、dispatch_semaphore_signal   发送一个信号
3、dispatch_semaphore_wait    等待信号

下面我们逐一介绍三个函数:

(1)dispatch_semaphore_create的声明为:
  dispatch_semaphore_t dispatch_semaphore_create(long value);
  传入的参数为long,输出一个dispatch_semaphore_t类型且值为value的信号量。值得注意的是,这里的传入的参数value必须大于或等于0,否则dispatch_semaphore_create会返回NULL。

(2)dispatch_semaphore_signal的声明为:
  long dispatch_semaphore_signal(dispatch_semaphore_t dsema)这个函数会使传入的信号量dsema的值加1;(至于返回值,待会儿再讲)

(3) dispatch_semaphore_wait的声明为:
  long dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout);
这个函数会使传入的信号量dsema的值减1。这个函数的作用是这样的,如果dsema信号量的值大于0,该函数所处线程就继续执行下面的语句,并且将信号量的值减1;如果desema的值为0,那么这个函数就阻塞当前线程等待timeout(注意timeout的类型为dispatch_time_t,不能直接传入整形或float型数),如果等待的期间desema的值被dispatch_semaphore_signal函数加1了,且该函数(即dispatch_semaphore_wait)所处线程获得了信号量,那么就继续向下执行并将信号量减1。如果等待期间没有获取到信号量或者信号量的值一直为0,那么等到timeout时,其所处线程自动执行其后语句。

(4)dispatch_semaphore_signal的返回值为long类型,当返回值为0时表示当前并没有线程等待其处理的信号量,其处理的信号量的值加1即可。当返回值不为0时,表示其当前有(一个或多个)线程等待其处理的信号量,并且该函数唤醒了一个等待的线程(当线程有优先级时,唤醒优先级最高的线程;否则随机唤醒)。
  dispatch_semaphore_wait的返回值也为long型。当其返回0时表示在timeout之前,该函数所处的线程被成功唤醒。当其返回不为0时,表示timeout发生。

(5)关于信号量,一般可以用停车来比喻。
  停车场剩余4个车位,那么即使同时来了四辆车也能停的下。如果此时来了五辆车,那么就有一辆需要等待。信号量的值就相当于剩余车位的数目,dispatch_semaphore_wait函数就相当于来了一辆车,dispatch_semaphore_signal就相当于走了一辆车。停车位的剩余数目在初始化的时候就已经指明了(dispatch_semaphore_create(long value)),调用一次dispatch_semaphore_signal,剩余的车位就增加一个;调用一次dispatch_semaphore_wait剩余车位就减少一个;当剩余车位为0时,再来车(即调用dispatch_semaphore_wait)就只能等待。有可能同时有几辆车等待一个停车位。有些车主没有耐心,给自己设定了一段等待时间,这段时间内等不到停车位就走了,如果等到了就开进去停车。而有些车主就像把车停在这,所以就一直等下去。

简单举例:

dispatch_group_t group = dispatch_group_create();   
dispatch_semaphore_t semaphore = dispatch_semaphore_create(10);   
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);   
for (int i = 0; i < 100; i++)   
{   
    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);   
    dispatch_group_async(group, queue, ^{   
    NSLog(@"%i",i);   
     sleep(2);   
     dispatch_semaphore_signal(semaphore);   
    });   
}   
dispatch_group_wait(group, DISPATCH_TIME_FOREVER);   
dispatch_release(group);   
dispatch_release(semaphore);   

简单的介绍一下这一段代码,创建了一个初使值为10的semaphore,每一次for循环都会创建一个新的线程,线程结束的时候会发送一个信号,线程创建之前会信号等待,所以当同时创建了10个线程之后,for循环就会阻塞,等待有线程结束之后会增加一个信号才继续执行,如此就形成了对并发的控制,如上就是一个并发数为10的一个线程队列。

NSCondition的用法

使用NSCondition,实现多线程的同步,即,可实现生产者消费者问题。

基本思路是,首先要创建公用的NSCondition实例。然后:
消费者取得锁,取产品,如果没有,则wait,这时会释放锁,直到有线程唤醒它去消费产品;
生产者制造产品,首先也是要取得锁,然后生产,再发signal,这样可唤醒wait的消费者。

 (IBAction)conditionTest:(id)sender
{
    NSLog(@"begin condition works!");
    products = [[NSMutableArray alloc] init];
    condition = [[NSCondition alloc] init];
     
    [NSThread detachNewThreadSelector:@selector(createProducter) toTarget:self withObject:nil];
    [NSThread detachNewThreadSelector:@selector(createConsumenr) toTarget:self withObject:nil];
}
 
- (void)createConsumenr
{
    [condition lock];
    while ([products count] == 0) {
        NSLog(@"wait for products");
        [condition wait];
    }
    [products removeObjectAtIndex:0];
    NSLog(@"comsume a product");
    [condition unlock];
}
 
- (void)createProducter
{
    [condition lock];
    [products addObject:[[NSObject alloc] init]];
    NSLog(@"produce a product");
    [condition signal];
    [condition unlock];
}

代码如上所示!

上一篇下一篇

猜你喜欢

热点阅读