机器学习与数据挖掘我爱编程

Python实现梯度下降算法求多元线性回归(一)

2018-04-28  本文已影响200人  MambaHJ

预备知识及相关文档博客

数据介绍

梯度下降算法及线性回归算法介绍

算法实现

  1. 网站的数据是以csv文件形式给出的,因此可以用pandas的read_csv()读取,但由于这个网站的数据没有表头,所以我们在读取时要加上表头,下面是代码,并且后面会针对部分代码给出解释
from io import StringIO
from urllib import request
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import ssl
import pandas as pd
import numpy as np
import linearRegrassion as lg

ssl._create_default_https_context = ssl._create_unverified_context

names =["mpg","cylinders","displacement","horsepower",
        "weight","acceleration","model year","origin","car name"]

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data'
s = request.urlopen(url).read().decode('utf8')

dataFile = StringIO(s)
cReader = pd.read_csv(dataFile,delim_whitespace=True,names=names) # 将流 转换为可迭代的 reader(csv row)
ssl._create_default_https_context = ssl._create_unverified_context
s = request.urlopen(url).read().decode('utf8')
dataFile = StringIO(s)  # 将字符串转换为 StringIO对象,使其具有文件属性
  1. 观察加载后的数据(如下图),截图较短,你可以对照上下表或是元数据集观察


    加上表头后的数据

    我们可以发现,有一定变化幅度并且比较相关联的几个量是mpg(燃料效率),displacement(发动机的位移),horsepower(发动机的马力,有缺失值),acceleration(汽车的加速性能)
    通常情况下,我们关注汽车性能时主要看它的加速性能,所以我们选取acceleration为关键性能,考量mpg,displacement对其的影响,以此做一个回归分析

ax = plt.subplot(111, projection='3d')  # 创建一个三维的绘图工程
ax.scatter(cReader["mpg"][:100],cReader["displacement"][:100],cReader["acceleration"][:100],c='y')      
#根据不同数据范围散点取不同颜色以便于区分
ax.scatter(cReader["mpg"][100:250],cReader["displacement"][100:250],cReader["acceleration"][100:250],c='r')
ax.scatter(cReader["mpg"][250:],cReader["displacement"][250:],cReader["acceleration"][250:],c='b')

ax.set_zlabel('acceleration')  # 坐标轴
ax.set_ylabel('displacement')
ax.set_xlabel('mpg')
plt.show()
# 绘制mpg和displacement的二维散点图,其实也是三维散点图在x,y平面上的投影
plt.scatter(cReader["mpg"],cReader["displacement"])
plt.xlabel('mpg')
plt.ylabel('displacement')
plt.show()

得到的散点图:


3d散点图.png

mpg和displacement的二维散点图:


Figure_2d.png
  1. 在这篇文章里我们介绍了一些准备知识,并且通过python的pandas模块获取了相关数据集并将其可视化,在下面的系列文章里我会介绍如何处理这些数据并且实现算法:
    第二篇已更新: Python实现梯度下降求多元线性回归(二)
上一篇下一篇

猜你喜欢

热点阅读