操作系统(五)输入/输出(I/O)管理

2021-09-11  本文已影响0人  AdRainty

5.1 I/O管理概述

5.1.1 I/O设备

“I/O”就是“输入/输出”(Input/Output)I/O设备就是可以将数据输入到计算机,或者可以接收计算机输出数据的外部设备,属于计算机中的硬件部件。

计算机系统中的I/O设备按使用特性可分为

按传输速率分类可分为

按信息交换的单位分类

5.1.2 I/O控制方式

5.1.2.1 程序直接控制方式

完成一次读/写操作的流程(以读操作为例)

  1. CPU向控制器发出读指令。于是设备启动,并且状态寄存器设为1(未就绪)
  2. 轮询检查控制器的状态(其实就是在不断地执行程序的循环,若状态位一直是1,说明设备还没准备好要输入的数据,于是CPU会不断地轮询)
  3. 输入设备准备好数据后将数据传给控制器,并报告自身状态
  4. 控制器将输入的数据放到数据寄存器中,并将状态改为0(已就绪)
  5. CPU发现设备已就绪,即可将数据寄存器中的内容读入CPU的寄存器中,再把CPU寄存器中的内容放入内存
  6. 若还要继续读入数据,则CPU继续发出读指令

读操作(数据输入):I/O设备→CPU→内存
写操作(数据输出):内存→CPU→I/O设备
每个字的读/写都需要CPU的帮助

优点:实现简单。在读/写指令之后,加上实现循环检查的一系列指令即可(因此才称为“程序直接控制方式”)
缺点:CPU和I/O设备只能串行工作,CPU需要一直轮询检查,长期处于“忙等”状态,CPU利用率低。

5.1.2.2 中断驱动方式

引入中断机制。由于I/O设备速度很慢,因此在CPU发出读/写命令后,可将等待I/O的进程阻塞,先切换到别的进程执行。当I/O完成后,控制器会向CPU发出一个中断信号,CPU检测到中断信号后,会保存当前进程的运行环境信息,转去执行中断处理程序处理该中断。处理中断的过程中,CPU从I/O控制器读一个字的数据传送到CPU寄存器,再写入主存。接着,CPU恢复等待I/O的进程(或其他进程)的运行环境,然后继续执行。

①CPU会在每个指令周期的末尾检查中断;
②中断处理过程中需要保存、恢复进程的运行环境,
这个过程是需要一定时间开销的。可见,如果中断发生的频率太高,也会降低系统性能

读操作(数据输入):I/O设备→CPU→内存
写操作(数据输出):内存→CPU→I/O设备

优点:与“程序直接控制方式”相比,在“中断驱动方式”中,I/O控制器会通过中断信号主动报告I/O已完成,CPU不再需要不停地轮询。CPU和I/O设备可并行工作,CPU利用率得到明显提升。
缺点:每个字在I/O设备与内存之间的传输,都需要经过CPU。而频繁的中断处理会消耗较多的CPU时间。

5.1.2.3 DMA方式

与“中断驱动方式”相比,DMA方式(Direct Memory Access,直接存储器存取。主要用于块设备的I/O控制)有这样几个改进:

具体见计组第七章

优点:数据传输以“块”为单位,CPU介入频率进一步降低。数据的传输不再需要先经过CPU再写入内存,数据传输效率进一步增加。CPU和I/O设备的并行性得到提升。
缺点:CPU每发出一条I/O指令,只能读/写一个或多个连续的数据块。如果要读/写多个离散存储的数据块,或者要将数据分别写到不同的内存区域时,CPU要分别发出多条I/O指令,进行多次中断处理才能完成。

图片.png

5.1.2.4 通道控制方式

通道:一种硬件,可以理解为是“小型CPU”。通道可以识别并执行一系列通道指令

图片.png

与CPU相比,通道可以执行的指令很单一,并且通道程序是放在主机内存中的,也就是说通道与CPU共享内存,CPU干预的频率
极低,通道会根据CPU的指示执行相应的通道程序,只有完成一组数据块的读/写后才需要发出中断信号,请求CPU干预。

缺点:实现复杂,需要专门的通道硬件支持
优点:CPU、通道、I/O设备可并行工作,资源利用率很高。

名称 完成一次读写的过程 CPU干预频率 每次I/O的数据传输单位 数据流向
程序直接控制方式 CPU发出I/O命令后需要不断轮询 极高 设备→CPU→内存
内存→CPU→设备
中断驱动方式 CPU发出I/O命令后可以做其他事,本次I/O完成后设备控制器发出中断信号 设备→CPU→内存
内存→CPU→设备
DMA方式 CPU发出I/O命令后可以做其他事,本次I/O完成后DMA控制器发出中断信号 设备→内存
内存→设备
通道控制方式 CPU发出I/O命令后可以做其他事。通道会执行通道程序以完成I/O,完成后通道向CPU发出中断信号 一组块 设备→内存
内存→设备

5.1.3 I/O子系统的层次结构

图片.png 图片.png

操作系统系统可以采用两种方式管理逻辑设备表(LUT):

第一种方式,整个系统只设置一张LUT,这就意味着所有用户不能使用相同的逻辑设备名,因此这种方式只适用于单用户操作系统。
第二种方式,为每个用户设置一张LUT,各个用户使用的逻辑设备名可以重复,适用于多用户操作系统。系统会在用户登录时为其建立一个用户管理进程,而LUT就存放在用户管理进程的PCB中。

直接涉及到硬件具体细节、且与中断无关的操作肯定是在设备驱动程序层完成的;没有涉及硬件的、对各种设备都需要进行的管理工作都是在设备独立性软件层完成的)

5.2 I/O核心子系统

5.2.1 I/O调度

II/O调度:用某种算法确定一个好的顺序来处理各个I/O请求。

如:磁盘调度(先来先服务算法、最短寻道优先算法、SCAN算法、C-SCAN算法、LOOK算法、C-LOOK算法)。当多个磁盘I/O请求到来时,用某种调度算法确定满足I/O请求的顺序。同理,打印机等设备也可以用先来先服务算法、优先级算法、短作业优先等算法来确定I/O调度顺序。

5.2.2 设备保护

操作系统需要实现文件保护功能,不同的用户对各个文件有不同的访问权限(如:只读、读和写等)。在UNIX系统中,设备被看做是一种特殊的文件,每个设备也会有对应的FCB。当用户请求访问某个设备时,系统根据FCB中记录的信息来判断该用户是否有相应的访问权限,以此实现“设备保护”的功能。

5.2.3 假脱机技术(SPOOLing技术)

批处理阶段引入了脱机输入/输出技术(用磁带完成):引入脱机技术后,缓解了CPU与慢速I/O设备的速度矛盾。另一方面,即使CPU在忙碌,也可以提前将数据输入到磁带;即使慢速的输出设备正在忙碌,也可以提前将数据输出到磁带。

在外围控制机的控制下,慢速输入设备的数据先被输入到更快速的磁带上。之后主机可以从快速的磁带上读入数据,从而缓解了速度矛盾

“假脱机技术”,又称“SPOOLing技术”是用软件的方式模拟脱机技术。SPOOLing系统的组成如下:

图片.png

要实现SPOOLing技术,必须要有多道程序技术的支持。系统会建立“输入进程”和“输出进程”。

在磁盘上开辟出两个存储区域——“输入井”和“输出井”

SPOOLing技术可以把一台物理设备虚拟成逻辑上的多台设备,可将独占式设备改造成共享设备。

独占式设备——只允许各个进程串行使用的设备。一段时间内只能满足一个进程的请求。
共享设备——允许多个进程“同时”使用的设备(宏观上同时使用,微观上可能是交替使用)。可以同时满足多个进程的使用请求。

5.2.4 设备的分配与回收

5.2.4.1 设备的固有属性

设备的固有属性可分为三种:独占设备、共享设备、虚拟设备。

5.2.4.2 设备分配

从进程运行的安全性上考虑,设备分配有两种方式:

优点:破坏了“请求和保持”条件,不会死锁
缺点:对于一个进程来说,CPU和I/O设备只能串行工作

优点:进程的计算任务和I/O任务可以并行处理,使进程迅速推进
缺点:有可能发生死锁(死锁避免、死锁的检测和解除)

设备的分配方式:

5.2.4.3 设备分配管理中的数据结构

设备分配管理中的数据结构有

图片.png 图片.png

5.2.4.4 设备分配步骤的步骤及改进

设备分配步骤的步骤:

  1. 根据进程请求的物理设备名查找SDT(注:物理设备名是进程请求分配设备时提供的参数)
  2. 根据SDT找到DCT,若设备忙碌则将进程PCB挂到设备等待队列中,不忙碌则将设备分配给进程。
  3. 根据DCT找到COCT,若控制器忙碌则将进程PCB挂到控制器等待队列中,不忙碌则将控制器分配给进程。
  4. 根据COCT找到CHCT,若通道忙碌则将进程PCB挂到通道等待队列中,不忙碌则将通道分配给进程。

缺点:

  1. 用户编程时必须使用“物理设备名”,底层细节对用户不透明,不方便编程
  2. 若换了一个物理设备,则程序无法运行
  3. 若进程请求的物理设备正在忙碌,则即使系统中还有同类型的设备,进程也必须阻塞等待

改进方法:建立逻辑设备名与物理设备名的映射机制,用户编程时只需提供逻辑设备名

  1. 根据进程请求的逻辑设备名查找SDT(注:用户编程时提供的逻辑设备名其实就是“设备类型”)
  2. 查找SDT,找到用户进程指定类型的、并且空闲的设备,将其分配给该进程。操作系统在逻辑设备表(LUT)中新增一个表项。
  3. 根据DCT找到COCT,若控制器忙碌则将进程PCB挂到控制器等待队列中,不忙碌则将控制器分配给进程。
  4. 根据COCT找到CHCT,若通道忙碌则将进程PCB挂到通道等待队列中,不忙碌则将通道分配给进程。

某用户进程第一次使用设备时使用逻辑设备名向操作系统发出请求,操作系统根据用户进程指定的设备类型(逻辑设备名)查找系统设备表,找到一个空闲设备分配给进程,并在LUT中增加相应表项。如果之后用户进程再次通过相同的逻辑设备名请求使用设备,则操作系统通过LUT表即可知道用户进程实际要使用的是哪个物理设备了,并且也能知道该设备的驱动程序入口地址。

5.2.5 缓冲区管理

5.2.5.1 缓冲区的概念

缓冲区是一个存储区域,可以由专门的硬件寄存器组成,也可利用内存作为缓冲区。使用硬件作为缓冲区的成本较高,容量也较小,一般仅用在对速度要求非常高的场合(如存储器管理中所用的联想寄存器,由于对页表的访问频率极高,因此使用速度很快的联想寄存器来存放页表项的副本)

一般情况下,更多的是利用内存作为缓冲区,“设备独立性软件”的缓冲区管理就是要组织管理好这些缓冲区

缓冲区的作用

根据系统设置的缓冲区个数,缓冲技术可以分为单缓冲、双缓冲、循环缓冲区

5.2.5.2 单缓冲

假设某用户进程请求某种块设备读入若干块的数据。若采用单缓冲的策略,操作系统会在主存中为其分配一个缓冲区(若题目中没有特别说明,一个缓冲区的大小就是一个块)。

注意:当缓冲区数据非空时,不能往缓冲区冲入数据,只能从缓冲区把数据传出;当缓冲区为空时,可以往缓冲区冲入数据,但必须把缓冲区充满以后,才能从缓冲区把数据传出。

T>C,因此CPU处理完数据后暂时不能将下一块数据传送到工作区,必须等待缓冲区中冲满数据

图片.png

单缓冲区处理每块数据的用时为max\{C,T\}+M

5.2.5.3 双缓冲

假设某用户进程请求某种块设备读入若干块的数据。若采用双缓冲的策略,操作系统会在主存中为其分配两个缓冲区(若题目中没有特别说明,一个缓冲区的大小就是一个块)

双缓冲题目中,假设初始状态为:工作区空,其中一个缓冲区满,另一个缓冲区空,假设T>C+M,时间为T

图片.png

假设T<C+M,时间为C+M

图片.png

采用双缓冲策略,处理一个数据块的平均耗时为max\{T, C+M\}

若两个相互通信的机器只设置单缓冲区,在任一时刻只能实现数据的单向传输。

管道通信中的“管道”其实就是缓冲区。要实现数据的双向传输,必须设置两个管道

5.2.5.4 循环缓冲区

将多个大小相等的缓冲区链接成一个循环队列。

图片.png

5.2.5.5 缓冲池

缓冲池由系统中共用的缓冲区组成。这些缓冲区按使用状况可以分为:空缓冲队列、装满输入数据的缓冲队列(输入队列)、装满输出数据的缓冲队列(输出队列)。

另外,根据一个缓冲区在实际运算中扮演的功能不同,又设置了四种工作缓冲区:用于收容输入数据的工作缓冲区(hin)、用于提取输入数据的工作缓冲区(sin)、用于收容输出数据的工作缓冲区(hout)、用于提取输出数据的工作缓冲区(sout)

图片.png

从空缓冲队列中取出一块作为收容输入数据的工作缓冲区(hin)。冲满数据后将缓冲区挂到输入队列队尾

上一篇 下一篇

猜你喜欢

热点阅读