数据结构与算法之美-08讲栈:如何实现浏览器的前进和后退功能
特别备注
本系列非原创,文章原文摘自极客时间-数据结构算法之美,用于平常学习记录。如有侵权,请联系我删除,谢谢!
浏览器的前进、后退功能,我想你肯定很熟悉吧?
当你依次访问完一串页面a-b-c之后,点击浏览器的后退按钮,就可以查看之前浏览过的页面b和a。当你后退到页面a,点击前进按钮,就可以重新查看页面b和c。但是,如果你后退到页面b后,点击了新的页面d,那就无法再通过前进、后退功能查看页面c了。
假设你是Chrome浏览器的开发工程师,你会如何实现这个功能呢?
这就要用到我们今天要讲的“栈”这种数据结构。带着这个问题,我们来学习今天的内容。
如何理解“栈”?
关于“栈”,我有一个非常贴切的例子,就是一摞叠在一起的盘子。我们平时放盘子的时候,都是从下往上一个一个放;取的时候,我们也是从上往下一个一个地依次取,不能从中间任意抽出。后进者先出,先进者后出,这就是典型的“栈”结构。
img从栈的操作特性上来看,栈是一种“操作受限”的线性表,只允许在一端插入和删除数据。
我第一次接触这种数据结构的时候,就对它存在的意义产生了很大的疑惑。因为我觉得,相比数组和链表,栈带给我的只有限制,并没有任何优势。那我直接使用数组或者链表不就好了吗?为什么还要用这个“操作受限”的“栈”呢?
事实上,从功能上来说,数组或链表确实可以替代栈,但你要知道,特定的数据结构是对特定场景的抽象,而且,数组或链表暴露了太多的操作接口,操作上的确灵活自由,但使用时就比较不可控,自然也就更容易出错。
当某个数据集合只涉及在一端插入和删除数据,并且满足后进先出、先进后出的特性,我们就应该首选“栈”这种数据结构。
如何实现一个“栈”?
从刚才栈的定义里,我们可以看出,栈主要包含两个操作,入栈和出栈,也就是在栈顶插入一个数据和从栈顶删除一个数据。理解了栈的定义之后,我们来看一看如何用代码实现一个栈。
实际上,栈既可以用数组来实现,也可以用链表来实现。用数组实现的栈,我们叫作顺序栈,用链表实现的栈,我们叫作链式栈。
我这里实现一个基于数组的顺序栈。基于链表实现的链式栈的代码,你可以自己试着写一下。我会将我写好的代码放到Github上,你可以去看一下自己写的是否正确。
我这段代码是用Java来实现的,但是不涉及任何高级语法,并且我还用中文做了详细的注释,所以你应该是可以看懂的。
// 基于数组实现的顺序栈
public class ArrayStack {
private String[] items; // 数组
private int count; // 栈中元素个数
private int n; //栈的大小
// 初始化数组,申请一个大小为n的数组空间
public ArrayStack(int n) {
this.items = new String[n];
this.n = n;
this.count = 0;
}
// 入栈操作
public boolean push(String item) {
// 数组空间不够了,直接返回false,入栈失败。
if (count == n) return false;
// 将item放到下标为count的位置,并且count加一
items[count] = item;
++count;
return true;
}
// 出栈操作
public String pop() {
// 栈为空,则直接返回null
if (count == 0) return null;
// 返回下标为count-1的数组元素,并且栈中元素个数count减一
String tmp = items[count-1];
--count;
return tmp;
}
}
了解了定义和基本操作,那它的操作的时间、空间复杂度是多少呢?
不管是顺序栈还是链式栈,我们存储数据只需要一个大小为n的数组就够了。在入栈和出栈过程中,只需要一两个临时变量存储空间,所以空间复杂度是O(1)。
注意,这里存储数据需要一个大小为n的数组,并不是说空间复杂度就是O(n)。因为,这n个空间是必须的,无法省掉。所以我们说空间复杂度的时候,是指除了原本的数据存储空间外,算法运行还需要额外的存储空间。
空间复杂度分析是不是很简单?时间复杂度也不难。不管是顺序栈还是链式栈,入栈、出栈只涉及栈顶个别数据的操作,所以时间复杂度都是O(1)。
支持动态扩容的顺序栈
刚才那个基于数组实现的栈,是一个固定大小的栈,也就是说,在初始化栈时需要事先指定栈的大小。当栈满之后,就无法再往栈里添加数据了。尽管链式栈的大小不受限,但要存储next指针,内存消耗相对较多。那我们如何基于数组实现一个可以支持动态扩容的栈呢?
你还记得,我们在数组那一节,是如何来实现一个支持动态扩容的数组的吗?当数组空间不够时,我们就重新申请一块更大的内存,将原来数组中数据统统拷贝过去。这样就实现了一个支持动态扩容的数组。
所以,如果要实现一个支持动态扩容的栈,我们只需要底层依赖一个支持动态扩容的数组就可以了。当栈满了之后,我们就申请一个更大的数组,将原来的数据搬移到新数组中。我画了一张图,你可以对照着理解一下。
img实际上,支持动态扩容的顺序栈,我们平时开发中并不常用到。我讲这一块的目的,主要还是希望带你练习一下前面讲的复杂度分析方法。所以这一小节的重点是复杂度分析。
你不用死记硬背入栈、出栈的时间复杂度,你需要掌握的是分析方法。能够自己分析才算是真正掌握了。现在我就带你分析一下支持动态扩容的顺序栈的入栈、出栈操作的时间复杂度。
对于出栈操作来说,我们不会涉及内存的重新申请和数据的搬移,所以出栈的时间复杂度仍然是O(1)。但是,对于入栈操作来说,情况就不一样了。当栈中有空闲空间时,入栈操作的时间复杂度为O(1)。但当空间不够时,就需要重新申请内存和数据搬移,所以时间复杂度就变成了O(n)。
也就是说,对于入栈操作来说,最好情况时间复杂度是O(1),最坏情况时间复杂度是O(n)。那平均情况下的时间复杂度又是多少呢?还记得我们在复杂度分析那一节中讲的摊还分析法吗?这个入栈操作的平均情况下的时间复杂度可以用摊还分析法来分析。我们也正好借此来实战一下摊还分析法。
为了分析的方便,我们需要事先做一些假设和定义:
- 栈空间不够时,我们重新申请一个是原来大小两倍的数组;
- 为了简化分析,假设只有入栈操作没有出栈操作;
- 定义不涉及内存搬移的入栈操作为simple-push操作,时间复杂度为O(1)。
如果当前栈大小为K,并且已满,当再有新的数据要入栈时,就需要重新申请2倍大小的内存,并且做K个数据的搬移操作,然后再入栈。但是,接下来的K-1次入栈操作,我们都不需要再重新申请内存和搬移数据,所以这K-1次入栈操作都只需要一个simple-push操作就可以完成。为了让你更加直观地理解这个过程,我画了一张图。
img你应该可以看出来,这K次入栈操作,总共涉及了K个数据的搬移,以及K次simple-push操作。将K个数据搬移均摊到K次入栈操作,那每个入栈操作只需要一个数据搬移和一个simple-push操作。以此类推,入栈操作的均摊时间复杂度就为O(1)。
通过这个例子的实战分析,也印证了前面讲到的,均摊时间复杂度一般都等于最好情况时间复杂度。因为在大部分情况下,入栈操作的时间复杂度O都是O(1),只有在个别时刻才会退化为O(n),所以把耗时多的入栈操作的时间均摊到其他入栈操作上,平均情况下的耗时就接近O(1)。
栈在函数调用中的应用
前面我讲的都比较偏理论,我们现在来看下,栈在软件工程中的实际应用。栈作为一个比较基础的数据结构,应用场景还是蛮多的。其中,比较经典的一个应用场景就是函数调用栈。
我们知道,操作系统给每个线程分配了一块独立的内存空间,这块内存被组织成“栈”这种结构,用来存储函数调用时的临时变量。每进入一个函数,就会将临时变量作为一个栈帧入栈,当被调用函数执行完成,返回之后,将这个函数对应的栈帧出栈。为了让你更好地理解,我们一块来看下这段代码的执行过程。
int main() {
int a = 1;
int ret = 0;
int res = 0;
ret = add(3, 5);
res = a + ret;
printf("%d", res);
reuturn 0;
}
int add(int x, int y) {
int sum = 0;
sum = x + y;
return sum;
}
从代码中我们可以看出,main()函数调用了add()函数,获取计算结果,并且与临时变量a相加,最后打印res的值。为了让你清晰地看到这个过程对应的函数栈里出栈、入栈的操作,我画了一张图。图中显示的是,在执行到add()函数时,函数调用栈的情况。
img栈在表达式求值中的应用
我们再来看栈的另一个常见的应用场景,编译器如何利用栈来实现表达式求值。
为了方便解释,我将算术表达式简化为只包含加减乘除四则运算,比如:34+13*9+44-12/3。对于这个四则运算,我们人脑可以很快求解出答案,但是对于计算机来说,理解这个表达式本身就是个挺难的事儿。如果换作你,让你来实现这样一个表达式求值的功能,你会怎么做呢?
实际上,编译器就是通过两个栈来实现的。其中一个保存操作数的栈,另一个是保存运算符的栈。我们从左向右遍历表达式,当遇到数字,我们就直接压入操作数栈;当遇到运算符,就与运算符栈的栈顶元素进行比较。
如果比运算符栈顶元素的优先级高,就将当前运算符压入栈;如果比运算符栈顶元素的优先级低或者相同,从运算符栈中取栈顶运算符,从操作数栈的栈顶取2个操作数,然后进行计算,再把计算完的结果压入操作数栈,继续比较。
我将3+5*8-6这个表达式的计算过程画成了一张图,你可以结合图来理解我刚讲的计算过程。
img这样用两个栈来解决的思路是不是非常巧妙?你有没有想到呢?
栈在括号匹配中的应用
除了用栈来实现表达式求值,我们还可以借助栈来检查表达式中的括号是否匹配。
我们同样简化一下背景。我们假设表达式中只包含三种括号,圆括号()、方括号[]和花括号{},并且它们可以任意嵌套。比如,{[{}]}或[{()}([])]等都为合法格式,而{[}()]或[({)]为不合法的格式。那我现在给你一个包含三种括号的表达式字符串,如何检查它是否合法呢?
这里也可以用栈来解决。我们用栈来保存未匹配的左括号,从左到右依次扫描字符串。当扫描到左括号时,则将其压入栈中;当扫描到右括号时,从栈顶取出一个左括号。如果能够匹配,比如“(”跟“)”匹配,“[”跟“]”匹配,“{”跟“}”匹配,则继续扫描剩下的字符串。如果扫描的过程中,遇到不能配对的右括号,或者栈中没有数据,则说明为非法格式。
当所有的括号都扫描完成之后,如果栈为空,则说明字符串为合法格式;否则,说明有未匹配的左括号,为非法格式。
解答开篇
好了,我想现在你已经完全理解了栈的概念。我们再回来看看开篇的思考题,如何实现浏览器的前进、后退功能?其实,用两个栈就可以非常完美地解决这个问题。
我们使用两个栈,X和Y,我们把首次浏览的页面依次压入栈X,当点击后退按钮时,再依次从栈X中出栈,并将出栈的数据依次放入栈Y。当我们点击前进按钮时,我们依次从栈Y中取出数据,放入栈X中。当栈X中没有数据时,那就说明没有页面可以继续后退浏览了。当栈Y中没有数据,那就说明没有页面可以点击前进按钮浏览了。
比如你顺序查看了a,b,c三个页面,我们就依次把a,b,c压入栈,这个时候,两个栈的数据就是这个样子:
img当你通过浏览器的后退按钮,从页面c后退到页面a之后,我们就依次把c和b从栈X中弹出,并且依次放入到栈Y。这个时候,两个栈的数据就是这个样子:
img这个时候你又想看页面b,于是你又点击前进按钮回到b页面,我们就把b再从栈Y中出栈,放入栈X中。此时两个栈的数据是这个样子:
img这个时候,你通过页面b又跳转到新的页面d了,页面c就无法再通过前进、后退按钮重复查看了,所以需要清空栈Y。此时两个栈的数据这个样子:
img内容小结
我们来回顾一下今天讲的内容。栈是一种操作受限的数据结构,只支持入栈和出栈操作。后进先出是它最大的特点。栈既可以通过数组实现,也可以通过链表来实现。不管基于数组还是链表,入栈、出栈的时间复杂度都为O(1)。除此之外,我们还讲了一种支持动态扩容的顺序栈,你需要重点掌握它的均摊时间复杂度分析方法。
特别备注
本系列非原创,文章原文摘自极客时间-数据结构算法之美,用于平常学习记录。如有侵权,请联系我删除,谢谢!