分治策略
2018-05-12 本文已影响0人
szn好色仙人
求解递归式方法
最大子数组问题
分治策略
- 分治法流程
- 伪代码
-
C++实现
template<typename T>
T FindMaxCrossingSubarray(T* pArray, const int nLenC, int& nBeginPos,
int& nEndPos)
{
if (1 == nLenC)
{
nBeginPos = 0;
nEndPos = 0;
return pArray[0];
}
const int nLeftLenC = nLenC / 2;
T aSum[2] = {};
T nTemSum = 0;
for (int i = nLeftLenC - 1; i >= 0; --i)
{
nTemSum += pArray[i];
if (nLeftLenC - 1 == i || aSum[0] < nTemSum)
{
aSum[0] = nTemSum;
nBeginPos = i;
}
}
nTemSum = 0;
for (int i = nLeftLenC - 1; i < nLenC; ++i)
{
nTemSum += pArray[i];
if (nLeftLenC - 1 == i || aSum[1] < nTemSum)
{
aSum[1] = nTemSum;
nEndPos = i;
}
}
return aSum[0] + aSum[1] - pArray[nLeftLenC - 1];
}
template<typename T>
T FindMaximumSubarray(T* pArray, const int nLenC, int& nBeginPos,
int& nEndPos)
{
if (1 == nLenC)
{
nBeginPos = 0;
nEndPos = 0;
return pArray[0];
}
T aSum[4] = {};
int aLeftPos[2] = {};
int aRigthPos[2] = {};
int aCenterPos[2] = {};
const int nHalfC = nLenC / 2;
if (nHalfC)
{
aSum[0] = FindMaximumSubarray(pArray, nHalfC, aLeftPos[0],
aLeftPos[1]);
}
if (nLenC - nHalfC)
{
aSum[1] = FindMaximumSubarray(pArray + nHalfC, nLenC - nHalfC,
aRigthPos[0], aRigthPos[1]);
aRigthPos[0] += nHalfC;
aRigthPos[1] += nHalfC;
}
aSum[2] = FindMaxCrossingSubarray(pArray, nLenC, aCenterPos[0],
aCenterPos[1]);
if (aSum[0] >= aSum[1] && aSum[0] >= aSum[2])
{
nBeginPos = aLeftPos[0];
nEndPos = aLeftPos[1];
aSum[3] = aSum[0];
}
else if (aSum[1] >= aSum[0] && aSum[1] >= aSum[2])
{
nBeginPos = aRigthPos[0];
nEndPos = aRigthPos[1];
aSum[3] = aSum[1];
}
else
{
nBeginPos = aCenterPos[0];
nEndPos = aCenterPos[1];
aSum[3] = aSum[2];
}
return aSum[3];
}
线性解
- 流程
template<typename T>
T Better(T* pArray, const int nLenC, int& nBeginPos, int& nEndPos)
{
T nMaxSum = pArray[0];
T nSurplusSum = pArray[0];
int nTemBeginPos = nBeginPos = nEndPos = 0;
for (int i = 1; i < nLenC; ++i)
{
nSurplusSum += pArray[i];
if (nSurplusSum > nMaxSum)
{
nEndPos = i;
nBeginPos = nTemBeginPos;
nMaxSum = nSurplusSum;
}
else if (nSurplusSum <= 0)
{
nSurplusSum = 0;
nTemBeginPos = i + 1;
}
}
return nMaxSum;
}