从多种生物标志物到以患者为中心的个性化医疗

2022-09-15  本文已影响0人  飘涯

从多种生物标志物到以患者为中心的个性化医疗:一个用于决策支持的“应用语义知识库”

总结

来自多种模式(组学、成像、临床终点)的生物标志物的使用——尽管在科学界有所增加——在很大程度上落后于将其用于患者筛查作为治疗方案决策支持的承诺。这部分是因为异构实验数据和公共数据的语义整合困难,以及理解相关生物功能的复杂性,这两者对于预测生物学在临床上开发更安全的药物和更有效的治疗至关重要。

基于核心数据访问和集成能力,感知软件应用语义模式,使用内部实验数据和/或外部发布信息的几乎任何组合来创建、完善和鉴定生物标志物网络模型。这种模式应用扩展语义“可视化SPARQL”查询技术来跨多个信息集构建复杂的搜索,即使初始数据集没有在任何公共数据库模式或联合方法下正式连接。特定研究重点特有的应用语义知识库(ASK)包含这些模式的阵列,从而提供了适用于筛选和决策的集合。

在本海报中,我们展示了3个最近使用ASK的客户示例,以展示其作为决策支持工具的能力:

实验关联网络的语义连接丰富了策划的公共领域知识网络,有助于研究人员在功能水平上更好地理解生物标志物的机械方面。然后将这些知识应用于高度敏感、特定、评分的患者筛查——为生命科学和个性化医疗提供自信的决策支持。

挑战

方法论

方法

结果和讨论

影响与未来

image.png

图1:实验相关性网络和知识网络的语义数据合并:从电子表格和数据库查询(1,2左)到本体合并(3)和参考增强生物标记网络(4,右)

image.png

图2:从图中创建SPARQL:主网络中的节点选择(1)自动生成查询(2)和实际SPARQL语句(3)的可视化SPARQL表示

image.png

图3:网络浏览器可访问的ASK数组:作为症状前心脏移植失败决策支持的预测性筛选(左:评分界面)和预测置信度的“命中匹配”表示(右)

结论

以易于使用的方式应用一系列基于语义的模型是其对生命科学和个性化医学研究人员的吸引力所在,他们面临着复杂的生物学问题,每天都依赖于自信的决策支持。

能够通过直观的网络工具使用、共享和应用基于复杂网络模型的知识,该工具对用户隐藏了潜在的复杂性,同时还提供了关于哪些数据(目标、化合物、疾病、患者)适合模型以及在每个特定情况下匹配情况如何的简明信息,正在改变知识在生命科学和个性化医学中构建、提炼和应用的方式。

上一篇下一篇

猜你喜欢

热点阅读