Android 消息机制之Handler

2021-03-11  本文已影响0人  CodeDuan

在Android中,Android的消息机制多指Handler的运行机制,在Handler的运行过程中,Message,MessageQueue,Looper也是必不可少的一部分,接下来我们简单分析它们的工作过程。

一、Message

Message顾名思义就是消息的意思,他是Handler发送消息的载体。接下来我们来看Message中常用的几个参数。

/**
* User-defined message code so that the recipient can identify
* what this message is about. Each {@link Handler} has its own name-space
* for message codes, so you do not need to worry about yours conflicting
* with other handlers.
*/
public int what;
 /**
* arg1 and arg2 are lower-cost alternatives to using
* {@link #setData(Bundle) setData()} if you only need to store a
* few integer values.
*/
public int arg1;
 /**
* arg1 and arg2 are lower-cost alternatives to using
* {@link #setData(Bundle) setData()} if you only need to store a
* few integer values.
*/
public int arg2;
/**
* An arbitrary object to send to the recipient.  When using
* {@link Messenger} to send the message across processes this can only
 * be non-null if it contains a Parcelable of a framework class (not one
* implemented by the application).   For other data transfer use
* {@link #setData}.
*/
public Object obj;

根据源码中的注释我们可以知道各个参数的含义;
what:用户定义的消息代码,以便接收人识别此消息的含义,简单来说就是标识符。
agr1/2:存储整型数值。
obj:发送的对象。

另外注释中还提到,setData方法。

public void setData(Bundle data) {
        this.data = data;
    }

通过setData方法,我们可以利用Bundle传递更多我们想要的参数。

1.1 Message的创建:
通常没阅读过源码的人都会通过new Message的方法来构造Message对象,但是我们来看源码。

/** Constructor (but the preferred way to get a Message is to call {@link #obtain() Message.obtain()}).
*/
    public Message() {
    }

/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
*/
    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

通过代码中的注释,创建Message的首选方法是通过Message.obtain(); 此方法是从全局池中返回一个新的Message实例,避免了Message的重复创建。

二、MessageQueue
MessageQueue指的是消息队列,主要负责插入消息(enqueueMessage)和读取消息(next)。

2.1 插入消息
MessageQueue.enqueueMessage

boolean enqueueMessage(Message msg, long when) {
        //如果target为空  target指的就是Handler 
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }

        synchronized (this) {
            //如果msg已经在使用
            if (msg.isInUse()) {
                throw new IllegalStateException(msg + " This message is already in use.");
            }
            //如果退出 回收msg
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
            //标记msg的使用状态
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

2.2 读取消息
MessageQueue.next

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

MessageQueue是何时创建的呢?接下来我们看Looper;

三、Looper
Looper翻译为循环的意思,主要作用为不停的从MessageQueue中查看是否有新消息,如果有则会处理,否则会一直阻塞。首先看一下Looper的构造方法。

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

其中的mQueue指的就是MessageQueue,这恰好回答了我们上面的问题:MessageQueue是在创建Looper时创建的。

3.1 Looper的创建。
那么Looper又是何时创建的呢? 我们先来看Handler的源码。

public Handler(@Nullable Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

看源码中抛出的异常是不是很熟悉? 翻译为:不能在线程内创建Handler,还没有调用Looper.prepare()。
再加上面的 if (mLooper == null) 我们大概就可以知道,我们需要通过Looper.prepare()创建Looper。接下来继续看Looper的源码;

    public static void prepare() {
        prepare(true);
    }

     private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

通过Looper.prepare()方法,最后调用到了prepare(boolean quitAllowed)中的sThreadLocal.set(new Looper(quitAllowed));此时Looper就已经创建。如果我们在子线程中使用Handler,则必须先调用Looper.prepare()创建Looper。

3.2 Looper的启动。
其实Looper中最重要的是loop方法,只有调用了loop();消息循环才会生效,这也是为什么我们在子线程中使用Handler时,需要同时调用Looper.prepare()和Looper.loop();

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        if (me.mInLoop) {
            Slog.w(TAG, "Loop again would have the queued messages be executed"
                    + " before this one completed.");
        }

        me.mInLoop = true;
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        // Allow overriding a threshold with a system prop. e.g.
        // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);

        boolean slowDeliveryDetected = false;
        //死循环
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {//如果msg为空 跳出
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
            // Make sure the observer won't change while processing a transaction.
            final Observer observer = sObserver;

            final long traceTag = me.mTraceTag;
            long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
            if (thresholdOverride > 0) {
                slowDispatchThresholdMs = thresholdOverride;
                slowDeliveryThresholdMs = thresholdOverride;
            }
            final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
            final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);

            final boolean needStartTime = logSlowDelivery || logSlowDispatch;
            final boolean needEndTime = logSlowDispatch;

            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }

            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            Object token = null;
            if (observer != null) {
                token = observer.messageDispatchStarting();
            }
            long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
            try {
                msg.target.dispatchMessage(msg);
                if (observer != null) {
                    observer.messageDispatched(token, msg);
                }
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } catch (Exception exception) {
                if (observer != null) {
                    observer.dispatchingThrewException(token, msg, exception);
                }
                throw exception;
            } finally {
                ThreadLocalWorkSource.restore(origWorkSource);
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (logSlowDelivery) {
                if (slowDeliveryDetected) {
                    if ((dispatchStart - msg.when) <= 10) {
                        Slog.w(TAG, "Drained");
                        slowDeliveryDetected = false;
                    }
                } else {
                    if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                            msg)) {
                        // Once we write a slow delivery log, suppress until the queue drains.
                        slowDeliveryDetected = true;
                    }
                }
            }
            if (logSlowDispatch) {
                showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

可以看到,loop()方法是一个死循环,即一直都在循环消息,当MessageQueue的next方法返回的msg为null的时候才会跳出这个循环。
当我们调用Looper.quit方法时,就会调用MessageQueue的quit,此MessageQueue被标记为退出状态,next方法则返回为null。Looper才会退出。关键源码如下:

Looper.java
public void quit() {
        mQueue.quit(false);
    }

public void quitSafely() {
        mQueue.quit(true);
    }

MessageQueue.java
void quit(boolean safe) {
        if (!mQuitAllowed) {
            throw new IllegalStateException("Main thread not allowed to quit.");
        }

        synchronized (this) {
            if (mQuitting) {
                return;
            }
            mQuitting = true; //标记为退出

            if (safe) {
                removeAllFutureMessagesLocked();
            } else {
                removeAllMessagesLocked();
            }

            // We can assume mPtr != 0 because mQuitting was previously false.
            nativeWake(mPtr);
        }
    }
MessageQueue.java next()方法
       if (mQuitting) {
            dispose();
            return null;
        }

所以说,当我们不在需要使用Handler时,需要调用Looper.quit来退出Looper,否则Looper.loop和MessageQueue.next均会阻塞。

到这里也会读者会问到,为什么子线程中需要调用Looper.prepare和Looper.loop,而主线程中却不用呢?
我们可以看到Looper中有这样一段代码。

/**
     * Initialize the current thread as a looper, marking it as an
     * application's main looper. See also: {@link #prepare()}
     *
     * @deprecated The main looper for your application is created by the Android environment,
     *   so you should never need to call this function yourself.
     */
    @Deprecated
    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

注释中提到:应用程序的主循环程序是由Android环境创建的,所以你无须调用它。那么prepareMainLooper()究竟是在哪里调用了呢? 我们通过查到引用。可以查到是在ActivityThread中的Main方法中调用的。部分代码如下:

 public static void main(String[] args) {
        Looper.prepareMainLooper();
        Looper.loop();
    }

由此可以判断出,ActivityThread就是我们APP的主线程了,且内部自动创建了Looper,而且主线程中的Looper不可退出。

至此,我们知道如果没有消息则会阻塞,如果有消息会怎样处理呢?我们来看loop方法中关键的一行代码。

msg.target.dispatchMessage(msg);

其中msg.target指的就是Handler,我们继续看Handler的dispatchMessage方法。

public void dispatchMessage(@NonNull Message msg) {
        if (msg.callback != null) {
            //如果callback不为空 则调用handleCallback
            handleCallback(msg);
        } else {
            //如果mCallback不为空 则调用handlerMessage来处理消息
            if (mCallback != null) {
                //如果为true 则return
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            //如果mCallback为空 则调用Handler的handler方法
            handleMessage(msg);
        }
    }

其中msg.callback是一个Runnable对象,实际上就是Handler的post方法传递的Runnable。
mCallback是一个接口,包含了 handleMessage方法。所以我们可以通过new Handler(Callback)的方式来创建一个Handler。

四、Handler工作原理
Handler的工作主要为发送消息和接收消息。通过一系列的send和post方法来实现发送消息。

图1 图2

就拿sendMessage来举例,我们先看下源码:

public final boolean sendMessage(@NonNull Message msg) {
        return sendMessageDelayed(msg, 0);
    }

public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
            long uptimeMillis) {
        msg.target = this;
        msg.workSourceUid = ThreadLocalWorkSource.getUid();

        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

可以看到 最后还是调用了MessageQueue的enqueueMessage方法,也就是将这条消息插入到了队列中。再结合上面我们所认识的MessageQueue和Looper大致也就搞清楚Handler的工作原理了;大致如下:

Handler通过调用send/post等一系列方法,将Message插入到MessageQueue中,此时Looper通过MessageQueue的next方法拿到Message,当Looper拿到Message后,通过调用msg.target即Handler的dispatchMessage(msg)方法来处理消息。最终通过handleCallback或Handler的handleMessage将Message的处理交给开发者,这样大致就是整个Handler的运行机制了。

如果有哪里不对的地方,欢迎各位指正交流。一起进步。

上一篇下一篇

猜你喜欢

热点阅读