动态水指定方向流向
原始借鉴网址 https://www.shadertoy.com/view/Ms2SD1

对原始代码改动,去掉天空背景,去掉镜头旋转效果;
增加水按指定方向流淌效果;
const int NUM_STEPS = 20;
const float PI = 3.141592;
const float EPSILON = 1e-3;
// add by sunny begin
float u_speedTime = 0.3; // glsl场景渲染速度系数 0.1~1.0
float u_seaSpeedTime = 0.8; // 海面海浪速度系数 0.1~1.0
float u_choppy = 0.8; // 海浪振幅系数 0.1~100.0
float u_oriTime = 1.0; // 海浪方向系数 0.1~10.0
// add by sunny end
// sea
const int ITER_GEOMETRY = 2;
const int ITER_FRAGMENT = 4;
const float SEA_HEIGHT = 0.6;
const float SEA_CHOPPY = 10.0;
const float SEA_SPEED = 0.8;
const float SEA_FREQ = 0.16;
const vec3 SEA_BASE = vec3(0.0,0.09,0.18);
const vec3 SEA_WATER_COLOR = vec3(0.8,0.9,0.6)*0.6;
#define SEA_TIME (1.0 + iTime * SEA_SPEED)
// 海浪倍频矩阵, GLSL 是列矩阵存储(标志每单位面积内浪花多少)
const mat2 octave_m = mat2(1.6,1.2,-1.2,1.6);
// math欧拉角转四元数, 给定一个欧拉角,可以返回一个表示旋转的四元数对象(旋转矩阵)
mat3 fromEuler(vec3 ang) {
vec2 a1 = vec2(sin(ang.x),cos(ang.x));
vec2 a2 = vec2(sin(ang.y),cos(ang.y));
vec2 a3 = vec2(sin(ang.z),cos(ang.z));
mat3 m;
m[0] = vec3(a1.y*a3.y+a1.x*a2.x*a3.x,a1.y*a2.x*a3.x+a3.y*a1.x,-a2.y*a3.x);
m[1] = vec3(-a2.y*a1.x,a1.y*a2.y,a2.x);
m[2] = vec3(a3.y*a1.x*a2.x+a1.y*a3.x,a1.x*a3.x-a1.y*a3.y*a2.x,a2.y*a3.y);
return m;
}
// 散列表(随机)
float hash( vec2 p ) {
float h = dot(p,vec2(127.1,311.7));
return fract(sin(h)*43758.5453123);
}
// 距离场噪声
float noise( in vec2 p ) {
vec2 i = floor( p );
vec2 f = fract( p );
vec2 u = f*f*(3.0-2.0*f);
return -1.0+2.0*mix( mix( hash( i + vec2(0.0,0.0) ),
hash( i + vec2(1.0,0.0) ), u.x),
mix( hash( i + vec2(0.0,1.0) ),
hash( i + vec2(1.0,1.0) ), u.x), u.y);
}
// lighting 环境光(迷漫、无方向)
float diffuse(vec3 n,vec3 l,float p) {
return pow(dot(n,l) * 0.4 + 0.6,p);
}
// 点光源光(有方向的镜面反射光)
float specular(vec3 n,vec3 l,vec3 e,float s) {
float nrm = (s + 8.0) / (PI * 8.0);
return pow(max(dot(reflect(e,n),l),0.0),s) * nrm;
}
// sky 获取天空颜色
vec3 getSkyColor(vec3 e) {
e.y = (max(e.y,0.0)*0.8+0.2)*0.8;
return vec3(pow(1.0-e.y,2.0), 1.0-e.y, 0.6+(1.0-e.y)*0.4) * 1.1;
}
// sea 海面海浪
float sea_octave(vec2 uv, float choppy) {
uv += noise(uv);
vec2 wv = 1.0-abs(sin(uv));
vec2 swv = abs(cos(uv));
wv = mix(wv,swv,wv);
return pow(1.0-pow(wv.x * wv.y,0.65),choppy);
}
//
float map(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY * u_choppy;
vec2 uv = p.xz; uv.x *= 0.75;
float sea_time = 1.0 + iTime * u_seaSpeedTime;
float d, h = 0.0;
for(int i = 0; i < ITER_GEOMETRY; i++) {
d = sea_octave((uv+sea_time)*freq,choppy);
//d += sea_octave((uv-sea_time)*freq,choppy);
h += d * amp;
uv *= octave_m; freq *= 1.9; amp *= 0.22;
choppy = mix(choppy,1.0,0.2);
}
return p.y - h;
}
// 地图细节
float map_detailed(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY * u_choppy;
vec2 uv = p.xz; uv.x *= 0.75;
float d, h = 0.0;
float sea_time = 1.0 + iTime * u_seaSpeedTime;
for(int i = 0; i < ITER_FRAGMENT; i++) {
d = sea_octave((uv+sea_time)*freq,choppy);
//d += sea_octave((uv-sea_time)*freq,choppy);
h += d * amp;
uv *= octave_m; freq *= 1.9; amp *= 0.22;
choppy = mix(choppy,1.0,0.2);
}
return p.y - h;
}
// 获取海面颜色
vec3 getSeaColor(vec3 p, vec3 n, vec3 l, vec3 eye, vec3 dist) {
// // 聚光灯、主光源
float fresnel = clamp(1.0 - dot(n,-eye), 0.0, 1.0);
fresnel = pow(fresnel,3.0) * 0.5;
vec3 reflected = getSkyColor(reflect(eye,n)); // 反射光
vec3 refracted = SEA_BASE + diffuse(n,l,80.0) * SEA_WATER_COLOR * 0.12; // 折射光
vec3 color = mix(refracted,reflected,fresnel);
float atten = max(1.0 - dot(dist,dist) * 0.001, 0.0);
color += SEA_WATER_COLOR * (p.y - SEA_HEIGHT) * 0.18 * atten;
color += vec3(specular(n,l,eye,60.0));
return color;
}
// tracing 获取法向量
vec3 getNormal(vec3 p, float eps) {
vec3 n;
n.y = map_detailed(p);
n.x = map_detailed(vec3(p.x+eps,p.y,p.z)) - n.y;
n.z = map_detailed(vec3(p.x,p.y,p.z+eps)) - n.y;
n.y = eps;
return normalize(n);
}
// 海浪高度图跟踪
float heightMapTracing(vec3 ori, vec3 dir, out vec3 p) {
float tm = 0.0;
float tx = 1000.0;
float hx = map(ori + dir * tx);
if(hx > 0.0) {
p = ori + dir * tx;
return tx;
}
float hm = map(ori + dir * tm);
float tmid = 0.0;
for(int i = 0; i < NUM_STEPS; i++) {
tmid = mix(tm,tx, hm/(hm-hx));
p = ori + dir * tmid;
float hmid = map(p);
if(hmid < 0.0) {
tx = tmid;
hx = hmid;
} else {
tm = tmid;
hm = hmid;
}
}
return tmid;
}
// 获取像素-等同于cesium中czm_getMaterial函数
vec3 getPixel(in vec2 coord, float time) {
vec2 uv = coord / iResolution.xy;
uv = uv * 2.0 - 1.0;
uv.x *= iResolution.x / iResolution.y;
// ray
vec3 angForEuler = vec3(0.0,0.7,.0); // 欧拉参数,用于
vec3 ori = vec3(0.0,0.7,time*u_oriTime);
vec3 dir = normalize(vec3(uv.xy,-2.0));
dir.z += length(uv) * 0.14;
dir = normalize(dir) * fromEuler(angForEuler);
// tracing
vec3 p;
heightMapTracing(ori,dir,p);
vec3 dist = p - ori;
vec3 n = getNormal(p, dot(dist,dist) * EPSILON);
vec3 light = normalize(vec3(0.0,1.0,0.8));
// color
return mix(
getSkyColor(dir),
getSeaColor(p,n,light,dir,dist),
pow(smoothstep(0.0,-0.02,dir.y),0.2));
}
// main
void mainImage( out vec4 fragColor, in vec2 fragCoord ) {
float time = iTime * u_speedTime ;
vec3 color = getPixel(fragCoord, time);
// post
fragColor = vec4(pow(color,vec3(0.65)), 1.0);
}