python第六天

2019-10-28  本文已影响0人  code与有荣焉

爬虫实践

案例一:爬取当当网图书信息(补充)

import requests
from lxml import html
# 安装pandas
# pip install pandas
# 导入pandas
import pandas as pd
def spider(isbn):
    """:param   #param是参数
    当当网图书信息爬虫
    """
    # url = "http://search.dangdang.com/?key=python%B4%D3%C8%EB%C3%C5%B5%BD%CA%B5%BC%F9&act=input"
    # isbn 国际标准书号(唯一的) 9787115428028
    url = "http://search.dangdang.com/?key={}&act=input".format(isbn)
    print(url)
    # 获取网页的源代码
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36'}
    html_data = requests.get(url, headers=headers).text
    print(html_data)

    #使用xpath语法提取我们想要的内容
    selector = html.fromstring(html_data)

    ul_list = selector.xpath('//div[@id="search_nature_rg"]/ul/li')
    print('有{}家商铺售卖此书'.format(len(ul_list)))

    # 用于存储图书的所有信息,每一家是一个字典
    # [{},{},{}]
    book_info_list = []
    # 遍历
    for li in ul_list:
        # 爬取所有书籍的标题
        title = li.xpath('a/@title')[0]
        # print(title)
        # 获取所有购买链接
        link = li.xpath('a/@href')[0]
        # print(link)
        # 获取价格
        price = li.xpath('p[@class="price"]/span[@class="search_now_price"]/text()')[0]
        # print(price)
        # 去掉¥符号
        price = price.replace('¥', ' ')
        # print(price)

        # 爬取除了当当自营以外的所有店铺(作业)
        # //标签1[@属性1=属性值1]/.../text()
        # //标签1[@属性1=属性值1]/.../@属性的名字
        # store = li.xpath('p[@class="search_shangjia"]/a/text()')
        store = li.xpath('p[4]/a/@title')
        # store列表是当当自营的时候是空的
        if len(store) == 0:
            # 当当自营
            store = "当当自营"
        else:
            store = store[0]
        # print(store)
        book_info_list.append({
            'title': title,
            'link': link,
            'price': price,
            'store': store
        })

    # 排序
    book_info_list.sort(key=lambda x: float(x['price']), reverse=True)
    # 遍历图书列表
    for book in book_info_list:
        print(book)
    # import pandas as pd
    # 转化成dataframe格式
    df = pd.DataFrame(book_info_list)
    # 存储成csv   ,csv 是逗号分隔值文件
    df.to_csv('当当图书信息.csv')
isbn = input('请输入您要查询的书号')
spider(isbn)

案例二:爬取豆瓣即将上映电影信息

(自己的代码)可以运行

# 豆瓣即将上映电影爬虫
# 1. 输入任意城市名,然后获取该城市下即将上映电影的信息
from lxml import html
import requests
# 模拟浏览器访问url
url = 'https://movie.douban.com/cinema/later/{}/'.format(input('请输入城市名:'))
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36'}
# html_data 是网页源代码
html_data = requests.get(url, headers=headers).text
# fromstring方法处理后可以使用xpath语法
data = html.fromstring(html_data)
# 用xpath语法抓取数据
movie_info_list = []
movie_list = data.xpath('//div[@id="showing-soon"]/div')
for div in movie_list:
    movie_name = div.xpath('div/h3/a/text()')[0]
    print(movie_name)
    movie_date = div.xpath('div/ul/li[1]/text()')[0]
    print(movie_date)
    movie_type = div.xpath('div/ul/li[2]/text()')[0]
    print(movie_type)
    movie_country = div.xpath('div/ul/li[3]/text()')[0]
    print(movie_country)
    movie_num = div.xpath('div/ul/li[@class="dt last"]/span/text()')[0]
    print(movie_num)
    movie_num = movie_num.replace('人想看', ' ')
# 将抓取到的信息放入列表中排序
    movie_info_list.append({
        'movie_name': movie_name,
        'movie_date': movie_date,
        'movie_type': movie_type,
        'movie_country': movie_country,
        'movie_num': movie_num
    })
    movie_info_list.sort(key=lambda x: float(x['movie_num']), reverse=True)
print(movie_info_list)
# 存储到CSV文件
import pandas as pd
a = pd.DataFrame(movie_info_list)
a.to_csv('豆瓣即将上映电影')

一、爬虫常用的数据结构模型

#常用模型
from random import randint
li = []
for i in range(10):
    # li.append("商家{}".format(i))
    li.append({
        "store": "商家{}".format(i),
        'price': randint(300, 500)
    })
# 遍历
for x in li:
    print(x)
# 对商家进行排序
li.sort(key=lambda x: x['price'])
print('=========================================')
print('==================排序后====================')
print('=========================================')
# 排序后
for  x in li:
    print(x)

二、图片的爬取

# 图片的爬取
# 图片的地址
# @ src ,图片地址:http://b-ssl.duitang.com/uploads/blog/201312/04/20131204184148_hhXUT.jpeg
# 导入 requests
import requests
url = 'http://b-ssl.duitang.com/uploads/blog/201312/04/20131204184148_hhXUT.jpeg'
response = requests.get(url)
print(response.status_code)
# response.content和 response.text 的区别
# response.text
# 返回类型:str
# response.content
# 返回类型:bytes
img_info = response.content
print(img_info)
# 文件读取
# with open('index1.html', 'r', encoding='UTF-8') as f:
#     print(f.read())
# 文件进行写入,  wb  write binary 以二进制方式写入
# 因为是bytes类型所以不用解码
with open('mm.jpg', 'wb') as f:
    f.write(img_info)

# 爬小说
# text = '不好意思'
# with open('xiaoshuo.txt', 'w', encoding='UTF-8') as f:
#     f.write(text)

三、批量命名图片

# 批量命名图片
import requests
# 图片地址
# url = ''
# f = requests.get(url).content
# with open('xx.png', 'wb') as f:
#     f.write(f)
from random import randint
url1 = 'http://5b0988e595225.cdn.sohucs.com/images/20190917/10dd465a62b64513a38b24bd4735da6a.jpeg'
url2 = 'http://pics1.baidu.com/feed/fd039245d688d43f2b9ef37459037a1f0ef43b26.jpeg?token=790b4a63424ff91158de106833f44ba6&s=1DA4E8155E317A075CAD58D1030010B0'
movie_info_list = [
    {'movie_name':'中国机长', 'img_url': url1},
    {'movie_name': '天气之子', 'img_url': url2}
]
# 批量下载图片
# 遍历
for movie in movie_info_list:
    img_link = movie['img_url']
    response = requests.get(img_link)
    if response.status_code == 200:
        with open('./images/{}.jpg'.format(movie['movie_name']), 'wb') as f:
            f.write(response.content)
上一篇下一篇

猜你喜欢

热点阅读