数据库MySQL实战案例-优化系列

书写高质量SQL的30条建议

2020-05-15  本文已影响0人  神小六

前言

本文将结合实例demo,阐述30条有关于优化SQL的建议,多数是实际开发中总结出来的,希望对大家有帮助。

1、查询SQL尽量不要使用select *,而是select具体字段。

反例子:

select * from employee;

正例子:

select id,name from employee;

理由:

2、如果知道查询结果只有一条或者只要最大/最小一条记录,建议用limit 1

假设现在有employee员工表,要找出一个名字叫jay的人.

CREATE TABLE `employee` (
`id` int (11) NOT NULL, `name` varchar(255) DEFAULT NULL, 
`age` int (11) DEFAULT NULL,  
`date` datetime DEFAULT NULL, 
`sex` int(1) DEFAULT NULL, 
 PRIMARY KEY (`id`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8;

反例:

select id,name from employee where name = 'jay'

正例

select id,name from employee where name = 'jay' limit 1;

理由:

3、应尽量避免在where子句中使用or来连接条件

新建一个user表,它有一个普通索引userId,表结构如下:

CREATE TABLE `user` (
`id` int(11) NOT NULL AUTO_INCREMENT,   
`userId` int(11) NOT NULL,   
`age` int(11) NOT NULL, 
`name` varchar(255) NOT NULL, 
 PRIMARY KEY (`id`), 
 KEY  `idx_userId`(`userId`)
) ENGINE = InnoDBDEFAULT CHARSET = utf8;

假设现在需要查询userid为1或者年龄为18岁的用户,很容易有以下SQL

反例:

select * from user where userid = 1 or age = 18

正例:

//使用union all
select * from user where userid = 1 
union all 
select * from user where age = 18

//或者分开两条sql写:
select * from user where userid = 1
select * from user where age = 18

理由:

对于or+没有索引的age这种情况,假设它走了userId的索引,但是走到age查询条件时,它还得全表扫描,也就是需要三步过程:全表扫描+索引扫描+合并 如果它一开始就走全表扫描,直接一遍扫描就完事。mysql是有优化器的,处于效率与成本考虑,遇到or条件,索引可能失效,看起来也合情合理。

4、优化limit分页

我们日常做分页需求时,一般会用 limit 实现,但是当偏移量特别大的时候,查询效率就变得低下。
反例:

select id,name,age from employee limit 10000,10

正例:

//方案一 :返回上次查询的最大记录(偏移量)
select id,name from employee where id>10000 limit 10.
//方案二:order by + 索引
select id,name from employee order by id  limit 10000,10
//方案三:在业务允许的情况下限制页数:

理由:

5、优化你的like语句

日常开发中,如果用到模糊关键字查询,很容易想到like,但是like很可能让你的索引失效。
反例:

select userId,name from user where userId like '%123';

正例:

select userId,name from user where userId like '123%';

理由:

6、使用where条件限定要查询的数据,避免返回多余的行

假设业务场景是这样:查询某个用户是否是会员。曾经看过老的实现代码是这样。。。
反例:

List<Long> userIds = sqlMap.queryList("select userId from user where isVip=1");
boolean isVip = userIds.contains(userId);

正例:

Long userId = sqlMap.queryObject("select userId from user where userId='userId' and isVip='1' ")
boolean isVip = userId != null;

理由:

7、尽量避免在索引列上使用mysql的内置函数

业务需求:查询最近七天内登陆过的用户(假设loginTime加了索引)
反例:

select userId,loginTime from loginuser where Date_ADD(loginTime,Interval 7 DAY) >= now();

正例:

explain  select userId,loginTime from loginuser where  loginTime >= Date_ADD(NOW(),INTERVAL - 7 DAY

理由:

8、应尽量避免在where子句中对字段进行表达式操作,这将导致系统放弃使用索引而进行全表扫

反例:

select * from user where age -1 =10

正例:

select * from user where age = 11

理由:

9、Inner join 、left join、right join,优先使用Inner join,如果是left join,左边表结果尽量小

  • Inner join 内连接,在两张表进行连接查询时,只保留两张表中完全匹配的结果集
  • left join 在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录。
  • right join 在两张表进行连接查询时,会返回右表所有的行,即使在左表中没有匹配的记录。

都满足SQL需求的前提下,推荐优先使用Inner join(内连接),如果要使用left join,左边表数据结果尽量小,如果有条件的尽量放到左边处理。
反例:

select * from tab1 t1 left join tab2 t2  on t1.size = t2.size where t1.id > 2

正例:

select * from (select * from tab1 where id > 2) t1 left join tab2 t2 on t1.size = t2.size;

理由:

10、应尽量避免在where子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

反例:

select age,name  from user where age <> 18

正例:

//可以考虑分开两条sql写
select age,name  from user where age < 18;
select age,name  from user where age > 18;

理由:

11、使用联合索引时,注意索引列的顺序,一般遵循最左匹配原则。

表结构:(有一个联合索引idxuseridage,userId在前,age在后)

CREATE TABLE `user` (  
`id` int(11) NOT NULL AUTO_INCREMENT,  
`userId` int(11) NOT NULL,  
`age` int(11) DEFAULT NULL,  
`name` varchar(255) NOT NULL,  
PRIMARY KEY (`id`), 
KEY `idx_userid_age` (`userId`,`age`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 2 DEFAULT CHARSET = utf8;

反例:

select * from user where age = 10;
image.png

正例:

//符合最左匹配原则
select * from user where userid=10 and age = 10;
//符合最左匹配原则
select * from user where userid = 10;
image.png
image.png

理由:

12、对查询进行优化,应考虑在where及order by涉及的列上建立索引,尽量避免全表扫描。

反例:

select * from user where address = '深圳' order by age 
image.png

正例:

添加索引
alter table user add index idx_address_age (address,age)
image.png

13、如果插入数据过多,考虑批量插入。

反例:

for(User u :list){
 INSERT into user(name,age) values(#name#,#age#)
}

正例:

//一次500批量插入,分批进行
insert into user(name,age) values
<foreach collection="list" item="item" index="index" separator=",">    
      (#{item.name},#{item.age})
</foreach>

理由:

打个比喻:假如你需要搬一万块砖到楼顶,你有一个电梯,电梯一次可以放适量的砖(最多放500),你可以选择一次运送一块砖,也可以一次运送500块砖,你觉得哪个时间消耗大?

14、在适当的时候,使用覆盖索引。

覆盖索引能够使得你的SQL语句不需要回表,仅仅访问索引就能够得到所有需要的数据,大大提高了查询效率。
反例:

// like模糊查询,不走索引了
select * from user where userid like '%123%'
image.png

正例:

//id为主键,那么为普通索引,即覆盖索引登场了。
select id,name fromm user where userid like '%123%';
image.png

15、慎用distinct关键字

distinct 关键字一般用来过滤重复记录,以返回不重复的记录。在查询一个字段或者很少字段的情况下使用时,给查询带来优化效果。但是在字段很多的时候使用,却会大大降低查询效率。
反例:

SELECT DISTINCT * from  user;

正例:

select DISTINCT name from user

理由:

16、删除冗余和重复索引

反例:

 KEY `idx_userId` (`userId`)  
 KEY `idx_userId_age` (`userId`,`age`)

正例:

 //删除userId索引,因为组合索引(A,B)相当于创建了(A)和(A,B)索引
 KEY `idx_userId_age` (`userId`,`age`)

理由:

17、如果数据量较大,优化你的修改/删除语句。

避免同时修改或删除过多数据,因为会造成cpu利用率过高,从而影响别人对数据库的访问。
反例:

//一次删除10万或者100万+?
delete from user where id <100000;
//或者采用单一循环操作,效率低,时间漫长
for(User user:list){ 
      delete from user;
 }

正例:

//分批进行删除,如每次500
delete user where id < 500
delete product where id >= 500and id < 1000;

理由:

18、where子句中考虑使用默认值代替null。

反例:

select * from user where age is not null;
image.png

正例:

//设置0为默认值
select * from user where age > 0;
image.png

理由:

如果mysql优化器发现,走索引比不走索引成本还要高,肯定会放弃索引,这些条件 !=,>isnull,isnotnull经常被认为让索引失效,其实是因为一般情况下,查询的成本高,优化器自动放弃索引的。

19、不要有超过5个以上的表连接

20、exist&in的合理利用

假设表A表示某企业的员工表,表B表示部门表,查询所有部门的所有员工,很容易有以下SQL:

select * from A where deptId in (select deptId from B);

这样写等价于:

先查询部门表B
select deptId from B
再由部门deptId,查询A的员工
select * from A where A.deptId = B.deptId

可以抽象成这样的一个循环:

List<> resultSet ;   
for(int i=0;i<B.length;i++) {          
    for(int j=0;j<A.length;j++) {          
         if(A[i].id==B[j].id) {
             resultSet.add(A[i]);             
                  break;          
               }      
        }   
}

显然,除了使用in,我们也可以用exists实现一样的查询功能,如下:

select * from A where exists (select 1 from B where A.deptId = B.deptId);

因为exists查询的理解就是,先执行主查询,获得数据后,再放到子查询中做条件验证,根据验证结果(true或者false),来决定主查询的数据结果是否得意保留。
那么,这样写就等价于:

select * from A,先从A表做循环
select * from B where A.deptId = B.deptId,再从B表做循环.
同理,可以抽象成这样一个循环:

List<> resultSet ;    
for(int i=0;i<A.length;i++) {          
    for(int j=0;j<B.length;j++) {          
        if(A[i].deptId==B[j].deptId) {
             resultSet.add(A[i]);            
             break;          
          }       
     }   
}

数据库最费劲的就是跟程序链接释放。假设链接了两次,每次做上百万次的数据集查询,查完就走,这样就只做了两次;相反建立了上百万次链接,申请链接释放反复重复,这样系统就受不了了。即mysql优化原则,就是小表驱动大表,小的数据集驱动大的数据集,从而让性能更优。
因此,我们要选择最外层循环小的,也就是,如果B的数据量小于A,适合使用in,如果B的数据量大于A,即适合选择exist

21、尽量用union all替换 union

如果检索结果中不会有重复的记录,推荐union all 替换 union。
反例:

select * from user where userid = 1 
union  
select * from user where age = 10

正例:

select * from user where userid = 1 
union all
select * from user where age = 10

理由:

22、索引不宜太多,一般5个以内。

23、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型

反例:

`king_id` varchar(20) NOT NULL COMMENT '守护者Id'

正例:

`king_id` int(11) NOT NULL COMMENT '守护者Id'

理由:

24、索引不适合建在有大量重复数据的字段上,如性别这类型数据库字段。

因为SQL优化器是根据表中数据量来进行查询优化的,如果索引列有大量重复数据,Mysql查询优化器推算发现不走索引的成本更低,很可能就放弃索引了。

25、尽量避免向客户端返回过多数据量。

假设业务需求是,用户请求查看自己最近一年观看过的直播数据。
反例:

//一次性查询所有数据回来
select * from LivingInfo where watchId =useId and watchTime >= Date_sub(now(),Interval 1 Y)

正例:

//分页查询
select * from LivingInfo where watchId = useId and watchTime >= Date_sub(now(),Interval 1 Y) limit offset,pageSize
//如果是前端分页,可以先查询前两百条记录,因为一般用户应该也不会往下翻太多页,
select * from LivingInfo where watchId = useId and watchTime >= Date_sub(now(),Interval 1 Y) limit 200

26、当在SQL语句中连接多个表时,请使用表的别名,并把别名前缀于每一列上,这样语义更加清晰。

反例:

select  * from A inner 
join B on A.deptId = B.deptId;

正例:

select  memeber.name,deptment.deptName from A member inner
join B deptment on member.deptId = deptment.deptId;

27、尽可能使用varchar/nvarchar 代替 char/nchar。

反例:

`deptName` char(100) DEFAULT NULL COMMENT '部门名称'

正例:

`deptName` varchar(100) DEFAULT NULL COMMENT '部门名称'

理由:

28、为了提高group by 语句的效率,可以在执行到该语句前,把不需要的记录过滤掉。

反例:

select job,avg(salary) from employee  group by job having job = 'president' 
or job = 'managent'

正例:

select job,avg(salary) from employee where job ='president' 
or job = 'managent' group by job;

29、如果字段类型是字符串,where时一定用引号括起来,否则索引失效

反例:

select * from user where userid =123
image.png

正例:

select * from user where userid = '123'
image.png

理由:

30、使用explain 分析你SQL的计划

日常开发写SQL的时候,尽量养成一个习惯吧。用explain分析一下你写的SQL,尤其是走不走索引这一块。

explain select * from user where userid = 10086 or age = 18
image.png

文章来源于捡田螺的小男孩公众号 ,作者捡田螺的小男孩

上一篇下一篇

猜你喜欢

热点阅读