structured-streaming

2018-03-18  本文已影响200人  6cc89d7ec09f

编程模型

结构化数据流中的关键思想是将实时数据流视为一个不断附加的表。这导致新的流处理模型与批处理模型非常相似。您将把流式计算表示为标准批量查询,就像在静态表上一样,Spark将它作为增量查询在无界输入表上运行。让我们更详细地了解这个模型。


与kafka的集成

1、参考文档

http://spark.apache.org/docs/2.2.0/structured-streaming-kafka-integration.html

2、kafka的版本

Kafka broker version 0.10.0 or higher

3、示例1 在ide上运行
groupId = org.apache.spark
artifactId = spark-sql-kafka-0-10_2.11
version = 2.2.0
################编写代码在ide上启动##################
def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .master("local[2]")
      .appName("StructuredStreamingKafka")
      .getOrCreate()

    import spark.implicits._
    val df = spark.readStream
      .format("kafka")
      .option("kafka.bootstrap.servers","bigdata-pro02.kfk.com:9092")
      .option("subscribe","weblog")
      .load()
    val lines = df.selectExpr("CAST(value as STRING)")//对字段进行UDF操作,并返回该列
      .as[String]

    val wordCount = lines.flatMap(_.split(" ")).groupBy("value").count()

    //开启
    val query = wordCount.writeStream
      .outputMode("complete") //模式,complete,updata,
      .format("console")  //输出的地方在控制台
        .start()

    query.awaitTermination()

  }
###############启动指定节点上的kafka和消息生产者##################
bin/kafka-server-start.sh config/server.properties
bin/kafka-topics.sh --create --zookeeper bigdata-pro01.kfk.com:2181,bigdata-pro02.kfk.com:2181,bigdata-pro03.kfk.com:2181 --replication-factor 3 --partitions 1 --topic weblog
3、示例2 在spark-shell上运行
jars上需要导包
kafka_2.11-0.10.0.0.jar
kafka-clients-0.10.0.0.jar
spark-sql-kafka-0-10_2.11-2.2.0.jar
spark-streaming-kafka-0-10_2.11-2.1.0.jar
#####################启动spark-shell#################
bin/spark-shell
:paste
import spark.implicits._
val df = spark.readStream
  .format("kafka")
  .option("kafka.bootstrap.servers","bigdata-pro02.kfk.com:9092")
  .option("subscribe","weblog")
  .load()
val lines = df.selectExpr("CAST(value as STRING)")
  .as[String]
val wordCount = lines.flatMap(_.split(" ")).groupBy("value").count()
val query = wordCount.writeStream
  .outputMode("complete") 
  .format("console")  
    .start()
query.awaitTermination()

与mysql集成——输出到mysql中

spark2.2.0暂没有api直接输出道mysql中,但是可以利用重写ForeachWriter的方法,将每一行数据写入到mysql中。如果数据量非常大,建议先写到kafka中存储,kafka按照队列的排序进行写入到mysql中
jdbcSink类

package toMysql

import java.sql._

import org.apache.spark.sql.{ForeachWriter, Row}

/**
  * Created by zhongyuan on 2018/3/18.
  */
class jdbcSink(url:String,user:String,pwd:String) extends ForeachWriter[Row]{
  val driver = "com.mysql.jdbc.Driver";
  var statement:Statement = _;
  var connection:Connection  = _;
  //创建连接
   def open(partitionId: Long, version: Long): Boolean = {
     Class.forName(driver);
     connection = DriverManager.getConnection(url,user,pwd);
     this.statement = connection.createStatement();

     true;
   }
  //执行sql
  override def process(value: Row): Unit = {
    statement.executeUpdate("insert into wordcount values('"+value.getAs("value")+"',"+value.getAs("count")+")")
  }
  //关闭资源
  override def close(errorOrNull: Throwable): Unit = {
    connection.close()
  }
}

主函数 StructuredStreamingKafkaMysql

package toMysql

import org.apache.spark.sql.{ForeachWriter, Row, SparkSession}
import org.apache.spark.sql.streaming.ProcessingTime

/**
  * Created by zhongyuan on 2018/3/18.
  */
object StructuredStreamingKafkaMysql {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .master("local[2]")
      .appName("StructuredStreamingKafkaMysql")
      .getOrCreate()

    import spark.implicits._
    val df = spark.readStream
      .format("kafka")
      .option("kafka.bootstrap.servers","bigdata-pro02.kfk.com:9092")
      .option("subscribe","weblog")
      .load()
    val lines = df.selectExpr("CAST(value as STRING)")//对字段进行UDF操作,并返回该列
      .as[String]

    val wordCount = lines.flatMap(_.split(" ")).groupBy("value").count()

    //输出到外部mysql
    val url = "jdbc:mysql://bigdata-pro03.kfk.com/spark"
    val user  = "root"
    val pwd = "123456"
    val writer:ForeachWriter[Row] = new jdbcSink(url,user,pwd);//新建自定义类
    val query = wordCount
      .writeStream
      .foreach(writer)//forEach()里只能写ForeachWriter[Row]类,所以需要指定writer的类型
      .outputMode("update")
      .trigger(ProcessingTime("25 seconds"))
      .start()
    query.awaitTermination()
  }

}

执行顺序
先启动指定所有节点的zookeeper
在启动指定节点的kafka
启动指定节点的topic为weblog的消息生产者
启动指定节点的mysql
启动ide程序
利用消息producer来发送消息
查询mysql中是否有数据

上一篇下一篇

猜你喜欢

热点阅读