Tracking 入门随笔-随时更新

2017-02-06  本文已影响0人  汉杰

Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals

会议:CVPR 2016
实验室:Australian National University, Hongdong Li
目标:以前的方法只能在小范围内查找,本文的方法提供甚至在整张图上的查找的能力,实现跟踪。
特色:应用edge-based features,来自Piotr Doll´ar的一系列工作


A Super-Fast Online Face Tracking System for Video Surveillance

实验室:自动化所
目标:快速检测监控下的多个人脸,对暂时出画面的物体鲁邦。
方法:KLT + 直方图验证(保证不是背景)+ 记忆跟踪


A Contour-Based Moving Object Detection and Tracking

2005
目标:鲁棒、快速、非刚体物体检测和跟踪
方法:edge-based features(对光照不敏感) + 梯度光流法(gradient-based optical flow technique)


Face Tracking: An implementation of the Kanade-Lucas-Tomasi Tracking algorithm

KLT在人脸跟踪上的实践

KCF [1]


MOSSE[2]


“Learning to Track at 100 FPS with Deep Regression Networks”


MDnet[3],


DSST[4],


LCT[5]


Visual Tracking: An Experimental Survey [6]


一些数据库

  1. OTB50 http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
  2. OTB100
  3. VOT2014[7] http://www.votchallenge.net/
  4. VOT2015
  5. BoBoT dataset:“D. A. Klein, D. Schulz, S. Frintrop, and A. B. Cremers, “Adaptive
  6. real-time video-tracking for arbitrary objects,” in Proc. IEEE IROS, Taipei, Taiwan, 2010, pp. 772–777.”
  7. CAVIAR dataset:few but long and difficult videos
  8. i-LIDS Multiple-Camera Tracking Scenario
  9. 3DPeS dataset:contains videos with more than 200 people walking as recorded from eight different cameras in very long video sequences
  10. PETS-series:
  11. TRECVid video dataset:large video benchmark
  12. ALOV++ dataset:proposed by [6]; more than 300 video sequences; http://crcv.ucf.edu/data/ALOV++/

评价标准

  1. PETS:Performance Evaluation of Tracking and Surveillance
  2. PETS and VACE,CLEAR:for evaluating the performance of multiple target detection and tracking

参考文献

[1] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, "High-Speed Tracking with Kernelized Correlation Filters," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, pp. 583-596, 2015.
[2] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, "Visual object tracking using adaptive correlation filters," in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 2544-2550.
[3] H. Nam and B. Han. (2015, October 1, 2015). Learning Multi-Domain Convolutional Neural Networks for Visual Tracking. ArXiv e-prints 1510. Available: http://adsabs.harvard.edu/abs/2015arXiv151007945N
[4] M. Danelljan, G. Häger, F. Khan, and M. Felsberg, "Accurate scale estimation for robust visual tracking," in British Machine Vision Conference, Nottingham, September 1-5, 2014, 2014.
[5] C. Ma, X. Yang, Z. Chongyang, and M. H. Yang, "Long-term correlation tracking," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 5388-5396.
[6] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah, "Visual Tracking: An Experimental Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, pp. 1442-1468, 2014.
[7] M. Kristan, J. Matas, A. Leonardis, T. Vojíř, R. Pflugfelder, G. Fernández, G. Nebehay, F. Porikli, and L. Čehovin, "A Novel Performance Evaluation Methodology for Single-Target Trackers," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, pp. 2137-2155, 2016.

上一篇 下一篇

猜你喜欢

热点阅读