Python制作疫情地图--第一弹 获取数据
2020-04-03 本文已影响0人
Ahmed_Khpulwak
Python制作疫情地图
详细讲解视频地址——详细视频讲解
第一弹 获取数据(写入excel)
以下代码是绘制地图时调用的类,已封装。
导入需要的模块
若未安装,win+R进入命令行窗口,输入:pip install module(模块名)
import requests
from lxml import etree
import json
import re
import openpyxl
创建一个类
class Get_data():
获取数据
def get_data(self):
# 目标url
url = "https://voice.baidu.com/act/newpneumonia/newpneumonia/"
# 伪装请求头
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/80.0.3987.149 Safari/537.36 '
}
# 发出get请求
response = requests.get(url,headers=headers)
# 将请求的结果写入文件,便于分析
with open('html.txt', 'w') as file:
file.write(response.text)
def get_time(self):
with open('html.txt','r') as file:
text = file.read()
# 获取更新时间
time_in = re.findall('"mapLastUpdatedTime":"(.*?)"',text)[0]
time_out = re.findall('"foreignLastUpdatedTime":"(.*?)"',text)[0]
print('郭内毅擎更新时间为 '+time_in)
print('郭外毅擎更新时间为 '+time_out)
return time_in,time_out
解析数据
def parse_data(self):
with open('html.txt','r') as file:
text = file.read()
# 生成HTML对象
html = etree.HTML(text)
# 解析数据
result = html.xpath('//script[@type="application/json"]/text()')
# print(type(result))
result = result[0]
# print(type(result))
result = json.loads(result)
# print(type(result))
result = json.dumps(result['component'][0]['caseList'])
# print(result)
# print(type(result))
with open('data.json','w') as file:
file.write(result)
print('数据已写入json文件...')
response = requests.get("https://voice.baidu.com/act/newpneumonia/newpneumonia/")
# 将请求的结果写入文件,便于分析
with open('html.txt', 'w') as file:
file.write(response.text)
# 获取时间
time_in = re.findall('"mapLastUpdatedTime":"(.*?)"', response.text)[0]
time_out = re.findall('"foreignLastUpdatedTime":"(.*?)"', response.text)[0]
print(time_in)
print(time_out)
# 生成HTML对象
html = etree.HTML(response.text)
# 解析数据
result = html.xpath('//script[@type="application/json"]/text()')
print(type(result))
result = result[0]
print(type(result))
result = json.loads(result)
print(type(result))
# 以每个省的数据为一个字典
data_in = result['component'][0]['caseList']
for each in data_in:
print(each)
print("\n" + '*' * 20)
data_out = result['component'][0]['globalList']
for each in data_out:
print(each)
print("\n" + '*' * 20)
'''
area --> 大多为省份
city --> 城市
confirmed --> 累计
crued --> 值域
relativeTime -->
confirmedRelative --> 累计的增量
curedRelative --> 值域的增量
curConfirm --> 现有确镇
curConfirmRelative --> 现有确镇的增量
'''
# 规律----遍历列表的每一项,可以发现,每一项(type:字典)均代表一个省份等区域,这个字典的前11项是该省份的毅擎数据,
# 当key = 'subList'时,其结果为只有一项的列表,提取出列表的第一项,得到一系列的字典,字典中包含该城市的毅擎数据.
将数据写入excel文件
# 将得到的数据写入excel文件
# 创建一个工作簿
wb = openpyxl.Workbook()
# 创建工作表,每一个工作表代表一个area
ws_in = wb.active
ws_in.title = "国内毅擎"
ws_in.append(['省份', '累计确诊', '丝网', '治愈', '现有确诊', '累计确诊增量', '丝网增量', '治愈增量', '现有确诊增量'])
for each in data_in:
temp_list = [each['area'], each['confirmed'], each['died'], each['crued'], each['curConfirm'],
each['confirmedRelative'], each['diedRelative'], each['curedRelative'],
each['curConfirmRelative']]
for i in range(len(temp_list)):
if temp_list[i] == '':
temp_list[i] = '0'
ws_in.append(temp_list)
# 获取国外毅擎数据
for each in data_out:
print(each)
print("\n" + '*' * 20)
sheet_title = each['area']
# 创建一个新的工作表
ws_out = wb.create_sheet(sheet_title)
ws_out.append(['郭家', '累计确诊', '丝网', '治愈', '现有确诊', '累计确诊增量'])
for country in each['subList']:
list_temp = [country['country'], country['confirmed'], country['died'], country['crued'],
country['curConfirm'], country['confirmedRelative']]
for i in range(len(list_temp)):
if list_temp[i] == '':
list_temp[i] = '0'
ws_out.append(list_temp)
# 保存excel文件
wb.save('./data.xlsx')
生成excel文件(效果展示)
国内疫情数据 国外疫情数据 国外疫情数据最后附上完整代码
import requests
from lxml import etree
import json
import re
import openpyxl
class Get_data():
def get_data(self):
# 目标url
url = "https://voice.baidu.com/act/newpneumonia/newpneumonia/"
# 伪装请求头
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/80.0.3987.149 Safari/537.36 '
}
# 发出get请求
response = requests.get(url,headers=headers)
# 将请求的结果写入文件,便于分析
with open('html.txt', 'w') as file:
file.write(response.text)
def get_time(self):
with open('html.txt','r') as file:
text = file.read()
# 获取更新时间
time_in = re.findall('"mapLastUpdatedTime":"(.*?)"',text)[0]
time_out = re.findall('"foreignLastUpdatedTime":"(.*?)"',text)[0]
print('国内疫情更新时间为 '+time_in)
print('国外疫情更新时间为 '+time_out)
return time_in,time_out
def parse_data(self):
with open('html.txt','r') as file:
text = file.read()
# 生成HTML对象
html = etree.HTML(text)
# 解析数据
result = html.xpath('//script[@type="application/json"]/text()')
# print(type(result))
result = result[0]
# print(type(result))
result = json.loads(result)
# print(type(result))
result = json.dumps(result['component'][0]['caseList'])
# print(result)
# print(type(result))
with open('data.json','w') as file:
file.write(result)
print('数据已写入json文件...')
response = requests.get("https://voice.baidu.com/act/newpneumonia/newpneumonia/")
# 将请求的结果写入文件,便于分析
with open('html.txt', 'w') as file:
file.write(response.text)
# 获取时间
time_in = re.findall('"mapLastUpdatedTime":"(.*?)"', response.text)[0]
time_out = re.findall('"foreignLastUpdatedTime":"(.*?)"', response.text)[0]
print(time_in)
print(time_out)
# 生成HTML对象
html = etree.HTML(response.text)
# 解析数据
result = html.xpath('//script[@type="application/json"]/text()')
print(type(result))
result = result[0]
print(type(result))
result = json.loads(result)
print(type(result))
# 以每个省的数据为一个字典
data_in = result['component'][0]['caseList']
for each in data_in:
print(each)
print("\n" + '*' * 20)
data_out = result['component'][0]['globalList']
for each in data_out:
print(each)
print("\n" + '*' * 20)
'''
area --> 大多为省份
city --> 城市
confirmed --> 累计
died --> 死亡
crued --> 治愈
relativeTime -->
confirmedRelative --> 累计的增量
curedRelative --> 治愈的增量
curConfirm --> 现有确诊
curConfirmRelative --> 现有确诊的增量
diedRelative --> 死亡的增量
'''
# 规律----遍历列表的每一项,可以发现,每一项(type:字典)均代表一个省份等区域,这个字典的前11项是该省份的疫情数据,
# 当key = 'subList'时,其结果为只有一项的列表,提取出列表的第一项,得到一系列的字典,字典中包含该城市的疫情数据.
# 将得到的数据写入excel文件
# 创建一个工作簿
wb = openpyxl.Workbook()
# 创建工作表,每一个工作表代表一个area
ws_in = wb.active
ws_in.title = "国内疫情"
ws_in.append(['省份', '累计确诊', '死亡', '治愈', '现有确诊', '累计确诊增量', '死亡增量', '治愈增量', '现有确诊增量'])
for each in data_in:
temp_list = [each['area'], each['confirmed'], each['died'], each['crued'], each['curConfirm'],
each['confirmedRelative'], each['diedRelative'], each['curedRelative'],
each['curConfirmRelative']]
for i in range(len(temp_list)):
if temp_list[i] == '':
temp_list[i] = '0'
ws_in.append(temp_list)
# 获取国外疫情数据
for each in data_out:
print(each)
print("\n" + '*' * 20)
sheet_title = each['area']
# 创建一个新的工作表
ws_out = wb.create_sheet(sheet_title)
ws_out.append(['国家', '累计确诊', '死亡', '治愈', '现有确诊', '累计确诊增量'])
for country in each['subList']:
list_temp = [country['country'], country['confirmed'], country['died'], country['crued'],
country['curConfirm'], country['confirmedRelative']]
for i in range(len(list_temp)):
if list_temp[i] == '':
list_temp[i] = '0'
ws_out.append(list_temp)
# 保存excel文件
wb.save('./data.xlsx')
求点赞求关注(✺ω✺)qwqqqqq
详细讲解视频地址——详细视频讲解