Python之路

数据分析——Pandas合并数据,实现多表连接查询

2021-01-06  本文已影响0人  python与数据分析

【导语】 学过Excel和MySQL,Pandas后,你会发现它们的都能处理数据,只是实现方式不同罢了,互相能起到互补的作用。那么,在工作中,工具没有好坏之分,只要能解决问题,都是好工具,关键是我们怎么用。那么本篇文章,主要总结在python中如何合并数据,如何利用pandas实现多表连接查询。

一、Pandas合并数据

1、concat()

我们可以通过DataFrame或Series类型的concat方法,来进行连接操作,连接时,会根据索引进行对齐。

df1=pd.DataFrame({"date":[2015,2016,2017,2018,2019],"x1":[2000,3000,5000,8000,10000],"x2":[np.nan,"d","d","c","c"]})
df2=pd.DataFrame({'date':[2017,2018,2019,2020],"y1":[1000,2000,3000,2000]})
# display(df1,df2)
df3=pd.concat([df1,df2],keys=["df1","df2"])
display(df3)
#索引层级索引元素时,先外再内
df3.loc["df2",3].loc["y1"]
2、merge()

通过pandas或DataFrame的merge方法,可以进行两个DataFrame的连接,这种连接类似于SQL中对两张表进行的join连接。

df1=pd.DataFrame({"date":[2015,2016,2017,2018,2019],"x1":[2000,3000,5000,8000,10000],"x2":[np.nan,"d","d","c","c"]})
df2=pd.DataFrame({'date':[2017,2018,2019,2020],"y1":[1000,2000,3000,2000]})
# display(df1,df2)
df3=df1.merge(df2,on="date")
display(df3)
df1=pd.DataFrame({"date":[2015,2016,2017,2018,2019],"x1":[2000,3000,5000,8000,10000],"x2":[np.nan,"d","d","c","c"]})
df2=pd.DataFrame({'date':[2017,2018,2019,2020],"y1":[1000,2000,3000,2000]})
# display(df1,df2)
df3=df1.merge(df2,how='left',on="date")
display(df3)

二、Python合并数据

1、append

在对行进行连接时,也可以使用Series或DataFrame的append方法。append是concat的简略形式,只不过只能在axis=0上进行合并。

df1=pd.DataFrame({"date":[2015,2016,2017,2018,2019],"x1":[2000,3000,5000,8000,10000],"x2":[np.nan,"d","d","c","c"]})
df2=pd.DataFrame({'date':[2017,2018,2019,2020],"y1":[1000,2000,3000,2000]})
# display(df1,df2)
df3=df1.append(df2)
display(df3)
2、join

与merge方法类似,但是默认使用索引进行连接。

不同点:

df1=pd.DataFrame({"date":[2015,2016,2017,2018,2019],"x1":[2000,3000,5000,8000,10000],"x2":[np.nan,"d","d","c","c"]})
df2=pd.DataFrame({'date':[2017,2018,2019,2020],"y1":[1000,2000,3000,2000]})
# display(df1,df2)
df3=df1.join(df2,how='left',lsuffix='_x',rsuffix='_y')
#根据索引对齐
display(df3)

希望本文的内容对大家的学习或者工作能带来一定的帮助,每天进步一点点,加油。

上一篇 下一篇

猜你喜欢

热点阅读