数据分析解密大数据大数据

为电影公司创建可视化图表-tableau

2017-06-06  本文已影响1374人  彭健平6点30

可视化链接https://public.tableau.com/profile/.5458#!/vizhome/1_2734/Q2

从The movie DB上获得一份电影数据进行可视化

提出问题:

数据各字段的意思

-   id:标识号
•   imdb_id:IMDB 标识号
•   popularity:在 Movie Database 上的相对页面查看次数
•   budget:预算(美元)
•   revenue:收入(美元)
•   original_title:电影名称
•   cast:演员列表,按 | 分隔,最多 5 名演员
•   homepage:电影首页的 URL
•   director:导演列表,按 | 分隔,最多 5 名导演
•   tagline:电影的标语
•   keywords:与电影相关的关键字,按 | 分隔,最多 5 个关键字
•   overview:剧情摘要
•   runtime:电影时长
•   genres:风格列表,按 | 分隔,最多 5 种风格
•   production_companies:制作公司列表,按 | 分隔,最多 5 家公司
•   release_date:首次上映日期
•   vote_count:投票数
•   vote_average:平均投票数
•   release_year:发行年份
•   budget_adj:根据通货膨胀调整的预算(2010 年,美元)
•   revenue_adj:根据通货膨胀调整的收入(2010 年,美元)

导入模块

import pandas as pd
import numpy as np

加载数据

df=pd.read_csv('/Users/zhongyaode/Desktop/movies.csv')
#查看数据基本统计数据
df.describe()
#查看字段的数据类型及行数
df.info()
#显示前五行数据
df.head()
#选取需要的字段
dd=df[['id','budget','revenue','genres','production_companies','vote_count','release_year','keywords','original_title']]
dd.info()

处理缺失值

#删除有缺失值的行
dd.dropna(axis=0).info()
#分列字段 genres字段
split_genres=df['genres'].str.split('|',expand=True)

split_genres['id']=df['id']#把df的id字段赋值给split_genres
merged_back=dd.merge(split_genres)#根据字段id进行连接
#merge相当于mysqle的join 进行表连接

melt的官方文档https://pandas.pydata.org/pandas-docs/stable/generated/pandas.melt.html

melted=pd.melt(
    merged_back,id_vars=['id','release_year'],
    value_vars=[0,1,2,3,4],value_name='genres').drop('variable',axis=1).dropna()
melted.head()
#输出melted
melted.to_csv('id_year_genres.csv',index=False)

处理production_companies字段

#拆分
dd_production=dd['production_companies'].str.split('|',expand=True)
dd_production['id']=dd['id']
merge_backed=dd_production.merge(dd)
#用melt函数
melted_production=pd.melt(merge_backed,id_vars=['id','budget','revenue','release_year'],
                         value_vars=[0,1,2,3,4],value_name='production_companies'
                         ).drop('variable',axis=1).dropna()
#筛选数据
melted_U_P=melted_production[(melted_production.production_companies=='Universal Pictures')|(melted_production.production_companies=='Paramount Pictures')]
melted_U_P.to_csv('melted_U_P.csv',index
                  =False)

处理keywords字段

#拆分字段
dd_keywords=dd['keywords'].str.split('|',expand=True)
dd_keywords['id']=dd['id']
dd_merge_keywords=dd.merge(dd_keywords)

#运用melt函数 
if_novel=pd.melt(dd_merge_keywords,id_vars=['id','budget','revenue','release_year','original_title','vote_count'],
                value_vars=[0,1,2,3,4],value_name='keywords').drop('variable',axis=1).dropna()

#再对keywords进行处理,值是based on novel的返回based on novel否则返回Not_novel
def peng(data):
    if data=='based on novel':
        return 'based on novel'
    else:
        return 'Not_novel'
if_novel['keywords']=if_novel['keywords'].apply(lambda x: peng(x))
#这里用python处理当是练习了,其实用tablea的创建组方法能非常简单的处理好
#输出
if_novel.to_csv('if_novel.csv',index=False)

接下来用非常好玩的tableau探索数据

tableau交互可视化的链接https://public.tableau.com/profile/.5458#!/vizhome/1_2734/Q1

参考资料 melt的官方文档https://pandas.pydata.org/pandas-docs/stable/generated/pandas.melt.html
以及tableau的官网教程

来几张工作仪和story

图片 1.png 图片 2.png 图片 3.png 图片 4.png 图片 5.png 6.png 7.png

以下进行的是尝试把四个文件合并到一起的方式·

df_genres=df['genres'].str.split('|',expand=True)
df_genres.info()

df_genres['id']=df['id']
df_genres['production_companies']=df['production_companies']
df_genres['keywords']=df['keywords']
#df.merge(df_genres).info()
df_pro=pd.melt(df_genresed,id_vars=['production_companies','id','keywords'],value_vars=[0,1,2,3,4],
               value_name='genres').drop('variable',axis=1).dropna()

df_product=df_pro['production_companies'].str.split('|',expand=True)
df_product['id']=df_pro['id']
df_product['genres']=df_pro['genres']
df_product['keywords']=df_pro['keywords']
df_genres_pro=pd.melt(df_product,id_vars=['id','genres','keywords'],value_vars=[0,1,2,3,4],
                      value_name='production_companies').drop('variable',axis=1).dropna()
df_k_g_p=df_genres_pro['keywords'].str.split('|',expand=True)

df_k_g_p['id']=df_genres_pro['id']
df_k_g_p['genres']=df_genres_pro['genres']
df_k_g_p['production_companies']=df_genres_pro['production_companies']

ddd=pd.melt(df_k_g_p,id_vars=['id','genres','production_companies'],value_vars=[0,1,2,3,4],
            value_name='keywords').drop('variable',axis=1).dropna()
ddd.info()
ddd.head()

movie=df

merged_split
split_companies=movie['keywords'].str.split('|',expand=True)
split_companies['id']=movie['id']
merged_split=movie.merge(split_companies)
key_df=pd.melt(merged_split,id_vars=['id','revenue','budget','release_date','genres','production_companies'],value_vars=[0,1,2,3,4],value_name='keyword').drop('variable',axis=1).dropna()

split_companies=movie['keywords'].str.split('|',expand=True)
split_companies['id']=movie['id']
merged_split=movie.merge(split_companies)
key_df=pd.melt(merged_split,id_vars=['id','revenue','budget','release_date','genres','production_companies'],value_vars=[0,1,2,3,4],value_name='keyword').drop('variable',axis=1).dropna()

split_companies=key_df['production_companies'].str.split('|',expand=True)
split_companies['id']=key_df['id']
# merged_split=key_df.merge(split_companies,on='id',how='left')
merged_split=key_df.merge(split_companies)
pp=pd.melt(merged_split,id_vars=['id','release_date','genres','keyword','revenue','budget'],value_vars=[0,1,2,3,4],value_name='production_company').drop('variable',axis=1).dropna()

movie=df.drop(['imdb_id','popularity','vote_average','original_title','cast','homepage','director','tagline','overview','runtime','vote_count','release_year','budget_adj','revenue_adj'],axis=1)
split_companies=movie['keywords'].str.split('|',expand=True)
split_companies['id']=movie['id']
merged_split=movie.merge(split_companies)
key_df=pd.melt(merged_split,id_vars=['id','revenue','budget','release_date','genres','production_companies'],value_vars=[0,1,2,3,4],value_name='keyword').drop('variable',axis=1).dropna()

split_genres=key_df['genres'].str.split('|',expand=True)
split_genres['id']=key_df['id']
merged_split=key_df.merge(split_genres)
genre=pd.melt(merged_split,id_vars=['id','release_date','production_companies','keyword','revenue','budget'],value_vars=[0,1,2,3,4],value_name='genre').drop('variable',axis=1).dropna()
genred=genre[:10000]
split_companies=genred['production_companies'].str.split('|',expand=True)
split_companies['id']=genred['id']
#merged_split=genre.merge(split_companies)
merg=genred.merge(split_companies,on='id',how='left')
#merged_split[:1]
pp=pd.melt(merg,id_vars=['id','release_date','genre','keyword','revenue','budget'],value_vars=[0,1,2,3,4],value_name='production_company').drop('variable',axis=1).dropna()

pp.info()

movie=df.drop(['imdb_id','popularity','vote_average','original_title','cast','homepage','director','tagline','overview','runtime','vote_count','release_year','budget_adj','revenue_adj'],axis=1)


split_companies=movie['keywords'].str.split('|',expand=True)
split_companies['id']=movie['id']
split_companies
merged_split=movie.merge(split_companies)
key_df=pd.melt(merged_split,id_vars=['id','revenue','budget','release_date','genres','production_companies'],value_vars=[0,1,2,3,4],value_name='keyword').drop('variable',axis=1).dropna()
split_genres=key_df['genres'].str.split('|',expand=True)
split_genres['id']=key_df['id']
merged_split=key_df.merge(split_genres)
genre_dff=pd.melt(merged_split,id_vars=['id','release_date','production_companies','keyword','revenue','budget'],value_vars=[0,1,2,3,4],value_name='genre').drop('variable',axis=1).dropna()
genre_df=genre_dff[:10000]
split_companies=genre_df['production_companies'].str.split('|',expand=True)
split_companies['id']=genre_df['id']
merged_split=genre_df.merge(split_companies,on='id',how='left')
p=pd.melt(merged_split,id_vars=['id','release_date','genre','keyword','revenue','budget'],value_vars=[0,1,2,3,4],value_name='production_company').drop('variable',axis=1).dropna()
上一篇 下一篇

猜你喜欢

热点阅读