洛谷(最长不下降子序列问题)
2018-10-02 本文已影响57人
kimoyami
链接:https://www.luogu.org/problemnew/show/P2766
思路:首先第一问用n^2的dp求出,第二问用网络流做,因为每个点只能用一次相当于结点上有限制,所以需要拆点,左边的点负责接输入,右边的点负责输出,中间拉一条容量为1的边,然后源点到每个dp[i] = 1的点都拉一条边,表示开始,所有dp[i] = res(一问答案)的点到汇点拉一条边,表示结束,跑一遍网络流即可。第三问不能重新建图会超时,直接把源点到1的边变为无穷,1拆的两个点之间的边变为无穷,n如果跟汇点有边就把边变为无穷,n拆的两个点间变为无穷,跑的最大流加上第二问的答案就是第三问的答案。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1010;
const int INF = 1e9;
int n;
int a[maxn];
struct edge{
int from,to,cap,flow;
};
struct Dinic{
int n,m,s,t;
vector<int> G[maxn];
vector<edge> edges;
int d[maxn];
int cur[maxn];
bool vis[maxn];
void init(int n){
this->n = n;
for(int i=0;i<=n;i++)G[i].clear();
edges.clear();
}
void addedge(int from,int to,int cap){
edges.push_back(edge{from,to,cap,0});
edges.push_back(edge{to,from,0,0});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool bfs(){
memset(vis,0,sizeof(vis));
d[s] = 0;
vis[s] = 1;
queue<int> q;
q.push(s);
while(!q.empty()){
int x = q.front();
q.pop();
for(int i=0;i<G[x].size();i++){
edge &e = edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to] = 1;
d[e.to] = d[x] + 1;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x,int a){
if(x==t||a==0)return a;
int flow = 0,f;
for(int &i = cur[x];i<G[x].size();i++){
edge &e = edges[G[x][i]];
if(d[x] + 1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0){
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(!a)break;
}
}
return flow;
}
int maxflow(int s,int t){
this->s = s;
this->t = t;
int flow = 0;
while(bfs()){
memset(cur,0,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
}solver;
int dp[maxn];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++)dp[i] = 1;
for(int i=1;i<=n;i++){
for(int j=1;j<i;j++){
if(a[j]<=a[i])dp[i] = max(dp[i],dp[j] + 1);
}
}
int res = 0;
for(int i=1;i<=n;i++){
res = max(res,dp[i]);
}
solver.init(2*n+1);
for(int i=1;i<=n;i++){
for(int j=1;j<i;j++){
if(a[j]<=a[i]&&dp[j]+1==dp[i])//一定要两个条件都确保才能建边
solver.addedge(j+n,i,1);
}
}
for(int i=1;i<=n;i++){
solver.addedge(i,i+n,1);
if(dp[i]==res){
solver.addedge(i+n,2*n+1,1);
}
if(dp[i]==1)solver.addedge(0,i,1);
}
int res1 = solver.maxflow(0,2*n+1);
solver.addedge(0,1,INF);
solver.addedge(1,1+n,INF);
if(dp[n]==res){//如果有边则加一条容量为无穷的边
solver.addedge(n,2*n,INF);
solver.addedge(2*n,2*n+1,INF);
}
int res2 = res1 + solver.maxflow(0,2*n+1);
printf("%d\n%d\n%d\n",res,res1,res2);
return 0;
}