标准流程参数调整 dims
2023-05-14 本文已影响0人
oceanandshore
seurat去批次标准流程
https://www.jianshu.com/p/e1dbe1062419
https://www.jianshu.com/p/4e748d3715a8
library(harmony)
library(devtools)
library(Seurat)
library(tidyverse)
library(patchwork)
library(ggplot2)
library(ggraph)
library(sctransform)
library(glmGamPoi)
rm(list=ls())
###1、样本读取,构建对象
Use.data <- Read10X(data.dir = "D:/atrial fibrillation 2022.11.03/GSE1109_RAW1/Use")
Use <- CreateSeuratObject(counts = Use.data, min.cells=3,
min.features = 200,project = "Use")
Use
Withdrawal.data <- Read10X(data.dir = "D:/atrial fibrillation 2022.11.03/GSE1109_RAW1/Withdrawal")
Withdrawal <- CreateSeuratObject(counts = Withdrawal.data, min.cells=3,
min.features = 200,project = "Withdrawal")
Withdrawal
###2、分组 https://zhuanlan.zhihu.com/p/465893822
Use$group<-"Use"
Withdrawal$group<-"Withdrawal"
###3、设置dataset_list
dataset_list <- list(Use,Withdrawal)
###4、Qc+标准化
dataset_list <- lapply(dataset_list,function(object) {
object <- PercentageFeatureSet(object, pattern = "^MT-", col.name = "percent.mt")
object <- subset(object,subset = nFeature_RNA > 800 & nFeature_RNA < 2800 &nCount_RNA >1000 &nCount_RNA <20000 & percent.mt < 13)#参数过滤细胞
object <- NormalizeData(object, verbose = FALSE)
object <- FindVariableFeatures(object, selection.method = "vst",
nfeatures = 2000, verbose = FALSE)
})
table(integrated@meta.data$orig.ident)
###5、整合数据去批次IntegrateData
integration_features <- SelectIntegrationFeatures(object.list = dataset_list)
integration_anchors <- FindIntegrationAnchors(object.list = dataset_list, anchor.features = integration_features)
integrated <- IntegrateData(anchorset = integration_anchors)
###6、switch to integrated assay.
DefaultAssay(integrated) <- "integrated"
###7、后续
integrated <- ScaleData(integrated, verbose = FALSE)
saveRDS(integrated, file = "./testtesttesttesttesttesttesttesttesttest.rds")
##########################################################################
rm(list=ls())
integrated = readRDS( file = "./testtesttesttesttesttesttesttesttesttest.rds")
integrated <- RunPCA(integrated, npcs = 50, verbose = FALSE)
integrated <- RunUMAP(integrated, reduction = "pca", dims = 1:50)
integrated <- FindNeighbors(integrated, reduction = "pca", dims = 1:50)
integrated <- FindClusters(integrated, resolution = 0.5)
plot4 = DimPlot(integrated, reduction = "umap", group.by='orig.ident')
plot6<- DimPlot(integrated, reduction = "umap", label = TRUE, repel = TRUE)
#combinate
plotc <- plot4+plot6
plotc
library(Seurat)
library(Azimuth)
library(SeuratData)
library(patchwork)
# Install the PBMC systematic comparative analyis (pmbcsca) dataset
InstallData("pbmcsca")
# returns a Seurat object named pbmcsca
pbmcsca <- LoadData("pbmcsca")
# The RunAzimuth function can take a Seurat object as input
integrated <- RunAzimuth(integrated, reference = "pbmcref")
p1 <- DimPlot(integrated, group.by = "predicted.celltype.l2", label = TRUE, label.size = 3) + NoLegend()
p3 <- DimPlot(integrated,label = TRUE,repel = TRUE, label.size = 3)
p1+p3
dim=20 resolution = 0.5 第7群分不开,AZI注释显示第7群是dnT细胞,查了前几个特异性marker也确实是dnT细胞。但是明显dnT细胞的比例没这么高,结合第7群中间不是那么紧密,应该是第7群没分开的原因。
dim20dim=30 resolution = 0.5 第7群还是分不开,16群没注释到,还有就是18群的细胞在哪呢???
dim=30dim=50 resolution = 0.5 :上面dim=20 的第7群分开了,分成11和13。新的问题是 圈出来的几个群AZI没注释到。
dim=50
dim=50 resolution = 0.6 :resolution调到 0.6 ,除了11和10对调位置,其他都一样
dim=50 resolution = 0.6dim=50 resolution = 0.7 :resolution调到 0.7 ,umap和0.6一样
dim=50 resolution = 0.7
dim=50 resolution = 0.8 :resolution调到 0.8 ,umap和0.7一样
dim=50 resolution = 0.9 :resolution调到 0.9 ,多了几群细胞,但是还是那几群注释不到
dim=50 resolution = 0.9