BCH工作量证明源代码分析
2018-02-09 本文已影响27人
路之遥_其漫漫_
概述
Bitcoin Cash 源码中,POW功能模块,主要提供两个函数,供上层进行调用:
-
GetNextWorkRequired
: 获取下个块的工作量(即难度) -
CheckProofOfWork
: 检查块的工作量是否合法。 true:合法; false:不合法。
下面是详细分析
获取下个块的难度
uint32_t GetNextWorkRequired(const CBlockIndex *pindexPrev,
const CBlockHeader *pblock, const Consensus::Params ¶ms) {
// Genesis block
if (pindexPrev == nullptr) {
return UintToArith256(params.powLimit).GetCompact();
}
// Special rule for regtest: we never retarget.
if (params.fPowNoRetargeting) {
return pindexPrev->nBits;
}
if (pindexPrev->GetMedianTimePast() >=
GetArg("-newdaaactivationtime", params.cashHardForkActivationTime)) {
return GetNextCashWorkRequired(pindexPrev, pblock, params);
}
return GetNextEDAWorkRequired(pindexPrev, pblock, params);
}
- 参数,pindexprev : 当前区块的父区块(In); pblock : 当前区块(In),主要使用了其中的时间戳字段; param : 当前的链参数
- 如果为上个区块为创世块,直接返回当前链参数配置的最低难度。
- 如果当前的链为回归测试链(regtest 测试链),返回与上个区块一样的难度
- 如果上个区块的MTP时间 >= CashHardWokd(硬分叉难度调整DAA)的激活时间,那采用新的难度算法
- 采用以前的难度算法
BCH的难度调整
uint32_t GetNextCashWorkRequired(const CBlockIndex *pindexPrev,
const CBlockHeader *pblock, const Consensus::Params ¶ms) {
// This cannot handle the genesis block and early blocks in general.
assert(pindexPrev);
// Special difficulty rule for testnet:
// If the new block's timestamp is more than 2* 10 minutes then allow
// mining of a min-difficulty block. //
if (params.fPowAllowMinDifficultyBlocks &&
(pblock->GetBlockTime() >
pindexPrev->GetBlockTime() + 2 * params.nPowTargetSpacing)) {
return UintToArith256(params.powLimit).GetCompact();
}
// Compute the difficulty based on the full adjustement interval.
const uint32_t nHeight = pindexPrev->nHeight;
assert(nHeight >= params.DifficultyAdjustmentInterval());
// Get the last suitable block of the difficulty interval.
const CBlockIndex *pindexLast = GetSuitableBlock(pindexPrev);
assert(pindexLast);
// Get the first suitable block of the difficulty interval.
uint32_t nHeightFirst = nHeight - 144;
const CBlockIndex *pindexFirst =
GetSuitableBlock(pindexPrev->GetAncestor(nHeightFirst));
assert(pindexFirst);
// Compute the target based on time and work done during the interval.
const arith_uint256 nextTarget =
ComputeTarget(pindexFirst, pindexLast, params);
const arith_uint256 powLimit = UintToArith256(params.powLimit);
if (nextTarget > powLimit) {
return powLimit.GetCompact();
}
return nextTarget.GetCompact()
}
- 如果当前链为测试链(testnet 测试链),并且当前块的时间与上个区块的时间间隔大于nPowTargetSpacing *2,允许下个块采用当前链的最低难度
- 获取上个区块的往上3个块的中值区块,作为结束位置
- 获取当前上个区块的第144个祖先区块的中值区块,作为起始位置
- 依据起始位置,结束位置,和链参数计算下个块的难度(工作量)work
- 当下个块的难度低于当前链最低难度时,返回当前链的最低难度;否则返回计算后的难度
- 总结:现阶段采用的算法是:进行逐块调整难度,调整机制如下
BCH采用的难度计算
/**
* Compute the a target based on the work done between 2 blocks and the time
* required to produce that work.
*/
static arith_uint256 ComputeTarget(const CBlockIndex *pindexFirst,
const CBlockIndex *pindexLast,
const Consensus::Params ¶ms) {
assert(pindexLast->nHeight > pindexFirst->nHeight);
/**
* From the total work done and the time it took to produce that much work,
* we can deduce how much work we expect to be produced in the targeted time
* between blocks.
*/
std::cout << "pindexLast->height : " << pindexLast->nHeight << ", pindexLast->nChainWork : " << pindexLast->nChainWork.GetCompact() <<
", pindexFirst->nHeight : " << pindexFirst->nHeight << ", pindexFirst->nChainWork : " << pindexFirst->nChainWork.GetCompact() << std::endl;
arith_uint256 work = pindexLast->nChainWork - pindexFirst->nChainWork;
work *= params.nPowTargetSpacing;
// In order to avoid difficulty cliffs, we bound the amplitude of the
// adjustement we are going to do.
assert(pindexLast->nTime > pindexFirst->nTime);
int64_t nActualTimespan = pindexLast->nTime - pindexFirst->nTime;
if (nActualTimespan > 288 * params.nPowTargetSpacing) {
nActualTimespan = 288 * params.nPowTargetSpacing;
} else if (nActualTimespan < 72 * params.nPowTargetSpacing) {
nActualTimespan = 72 * params.nPowTargetSpacing;
}
work /= nActualTimespan;
/**
* We need to compute T = (2^256 / W) - 1 but 2^256 doesn't fit in 256 bits.
* By expressing 1 as W / W, we get (2^256 - W) / W, and we can compute
* 2^256 - W as the complement of W.
*/
return (-work) / work;
}
- 计算起始位置至结束位置累计的工作量
- 根据实际出块时间与目标出块时间进行调整
- 尽量保证在1天之内出144个块,保证10分钟一个块
- 如果一天之内超过了144个块,则需要增加难度,反之就要降低难度
- 为了保证难度调整算法的不出现剧烈波动,一天的出块时间最多不超过288个,最少不低于72个
- 最后返回将计算后的难度
BCH以前采用的EDA难度调整算法
采用EDA的算法计算下个块的难度:
uint32_t GetNextEDAWorkRequired(const CBlockIndex *pindexPrev,
const CBlockHeader *pblock, const Consensus::Params ¶ms) {
// Only change once per difficulty adjustment interval
uint32_t nHeight = pindexPrev->nHeight + 1;
if (nHeight % params.DifficultyAdjustmentInterval() == 0) {
// Go back by what we want to be 14 days worth of blocks
assert(nHeight >= params.DifficultyAdjustmentInterval());
uint32_t nHeightFirst = nHeight - params.DifficultyAdjustmentInterval();
const CBlockIndex *pindexFirst = pindexPrev->GetAncestor(nHeightFirst);
assert(pindexFirst);
return CalculateNextWorkRequired(pindexPrev,
pindexFirst->GetBlockTime(), params);
}
const uint32_t nProofOfWorkLimit =
UintToArith256(params.powLimit).GetCompact();
if (params.fPowAllowMinDifficultyBlocks) {
// Special difficulty rule for testnet:
// If the new block's timestamp is more than 2* 10 minutes then allow
// mining of a min-difficulty block.
if (pblock->GetBlockTime() >
pindexPrev->GetBlockTime() + 2 * params.nPowTargetSpacing) {
return nProofOfWorkLimit;
}
// Return the last non-special-min-difficulty-rules-block
const CBlockIndex *pindex = pindexPrev;
while (pindex->pprev &&
pindex->nHeight % params.DifficultyAdjustmentInterval() != 0 &&
pindex->nBits == nProofOfWorkLimit) {
pindex = pindex->pprev;
}
return pindex->nBits;
}
// We can't go bellow the minimum, so early bail.
uint32_t nBits = pindexPrev->nBits;
if (nBits == nProofOfWorkLimit) {
return nProofOfWorkLimit;
}
// If producing the last 6 block took less than 12h, we keep the same
// difficulty.
const CBlockIndex *pindex6 = pindexPrev->GetAncestor(nHeight - 7);
assert(pindex6);
int64_t mtp6blocks =
pindexPrev->GetMedianTimePast() - pindex6->GetMedianTimePast();
if (mtp6blocks < 12 * 3600) {
return nBits;
}
// If producing the last 6 block took more than 12h, increase the difficulty
// target by 1/4 (which reduces the difficulty by 20%). This ensure the
// chain do not get stuck in case we lose hashrate abruptly.
arith_uint256 nPow;
nPow.SetCompact(nBits);
nPow += (nPow >> 2);
// Make sure we do not go bellow allowed values.
const arith_uint256 bnPowLimit = UintToArith256(params.powLimit);
if (nPow > bnPowLimit) nPow = bnPowLimit;
return nPow.GetCompact();
......
}
- 每2016个块调整一次难度
nHeight % params.DifficultyAdjustmentInterval() == 0
, 符合难度条件,则进入难度判断:- 获取计算起始位置的块索引,依据:起始位置,结束位置,链参数 计算下个块的难度
- 如果当前链为测试链(testnet),进入下面逻辑
- 当前块与上个区块的时间间隔大于 nPowTargetSpacing * 2,返回最低难度。
- 返回最后一个不等于最低难度的块的难度
- 如果难度不在调整周期,并且上个区块的难度为当前链参数的最低难度,直接返回最低难度
- 如果6个祖先块的MTP时间间隔小于12小时,直接返回上个区块的难度
- 不然就降低到当前难度1/4的难度:
nPow += (nPow >> 2);
- 当下个块的难度低于当前链最低难度时,返回当前链的最低难度;否则返回计算后的难度
总结:以前的难度调节机制是,主要分为两种:每隔2016个块params.DifficultyAdjustmentInterval()
进行一次大的难度调整。在难度稳定期间(相对来说),每6个块进行一次判断,看是否需要进行难度调整,如果6个块的出块时间大于12小时,将上个区块的难度降低1/4,作为下个块的难度。
EDA所采用的难度计算方法
依据起始位置,结束位置,链参数,计算下个块的难度
uint32_t CalculateNextWorkRequired(const CBlockIndex *pindexPrev,
if (params.fPowNoRetargeting) {
return pindexPrev->nBits;
}
// Limit adjustment step
int64_t nActualTimespan = pindexPrev->GetBlockTime() - nFirstBlockTime;
if (nActualTimespan < params.nPowTargetTimespan / 4) {
nActualTimespan = params.nPowTargetTimespan / 4;
}
if (nActualTimespan > params.nPowTargetTimespan * 4) {
nActualTimespan = params.nPowTargetTimespan * 4;
}
std::cout << "nActualTimespan : " << nActualTimespan << std::endl;
// Retarget
const arith_uint256 bnPowLimit = UintToArith256(params.powLimit);
arith_uint256 bnNew;
bnNew.SetCompact(pindexPrev->nBits);
bnNew *= nActualTimespan;
bnNew /= params.nPowTargetTimespan;
if (bnNew > bnPowLimit) bnNew = bnPowLimit;
return bnNew.GetCompact();
}
- 如果为回归测试链,直接返回上个区块的难度
- 计算实际的时间间隔
- 当实际时间间隔 < 预定目标的1/4时,将下阶段的时间间隔设为预定目标的1/4;或当实际时间间隔 > 预定目标的4倍时,将下阶段的时间间隔设为预定目标的4倍。
- 计算新的难度
bnNew *= nActualTimespan;
; - 当新难度低于当前链最低难度时,直接返回最低难度;否则返回计算后的新难度。
可以看出以前的难度调整算法:以4基础进行调整。当难度太小时,即出块的时间变短,将下阶段的时间增加至目标时间的1/4,进行缓慢增加难度;当难度太大时,即出块的时间变长,将下阶段时间降低至目标时间的4倍,缓慢降低难度;上述调节措施可以避免难度的剧烈波动。
块头工作量的检查
bool CheckProofOfWork(uint256 hash, uint32_t nBits,
const Consensus::Params ¶ms) {
bool fNegative;
bool fOverflow;
arith_uint256 bnTarget;
bnTarget.SetCompact(nBits, &fNegative, &fOverflow);
// Check range
if (fNegative || bnTarget == 0 || fOverflow ||
bnTarget > UintToArith256(params.powLimit)) {
return false;
}
// Check proof of work matches claimed amount
if (UintToArith256(hash) > bnTarget) {
return false;
}
return true;
}
- 参数,hash 将要检查的区块哈希;nBits 该区块中的难度字段;param:当前链参数
- 将难度编码为BCH中指定大数类型,判断编码过程中是否有溢出,负数,或难度小于当前链的最低难度情况,如果存在,返回false。
- 将hash转换为BCH中指定的大数类型,与块头难度编码后的值进行比较。如果大于块头难度,返回false。否则返回true。
该函数用来判断:块头哈希与块中声明的难度是否吻合(即该区块的工作量是否正确,不依赖于上下文)。
本文由 Copernicus团队 姚永芯
写作,转载无需授权。