Java中的wait和notify方法

2019-03-03  本文已影响0人  buzzerrookie

本文分析Java中Object类的wait和notify方法,深入JVM看一下底层是如何实现的。

wait和notify方法

Object类的waitnotify方法用于线程间的同步和互斥,它们在Java层面的定义如下:

public final void wait(long timeout, int nanos) throws InterruptedException {
    if (timeout < 0) {
        throw new IllegalArgumentException("timeout value is negative");
    }
    if (nanos < 0 || nanos > 999999) {
        throw new IllegalArgumentException(
                            "nanosecond timeout value out of range");
    }
    if (nanos > 0) {
        timeout++;
    }
    wait(timeout);
}

public final void wait() throws InterruptedException {
    wait(0);
}

public final native void wait(long timeout) throws InterruptedException;

public final native void notify();
public final native void notifyAll();

可以看到最后调用的都是native方法,这些native方法都是由Object类的registerNatives静态方法在静态代码块注册的。registerNatives方法对应的JNI方法可在OpenJDK的源码jdk/src/share/native/java/lang/Object.c中找到定义。该方法调用RegisterNatives函数向JVM注册了其他的JNI方法如hashCode、wait、notify和notifyAll等。

static JNINativeMethod methods[] = {
    {"hashCode",    "()I",                    (void *)&JVM_IHashCode},
    {"wait",        "(J)V",                   (void *)&JVM_MonitorWait},
    {"notify",      "()V",                    (void *)&JVM_MonitorNotify},
    {"notifyAll",   "()V",                    (void *)&JVM_MonitorNotifyAll},
    {"clone",       "()Ljava/lang/Object;",   (void *)&JVM_Clone},
};

JNIEXPORT void JNICALL
Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
{
    (*env)->RegisterNatives(env, cls,
                            methods, sizeof(methods)/sizeof(methods[0]));
}

Hotspot中的实现

wait方法

wait方法在Hotspot中的实现是文件openjdk8/hotspot/src/share/vm/prims/jvm.cpp中的JVM_MonitorWait函数,预处理后的代码如下所示:

extern "C" {
    void JNICALL JVM_MonitorWait(JNIEnv* env, jobject handle, jlong ms) {
        JavaThread* thread=JavaThread::thread_from_jni_environment(env);
        ThreadInVMfromNative __tiv(thread);
        HandleMarkCleaner __hm(thread);
        Thread* __the_thread__ = thread;
        os::verify_stack_alignment();
        Handle obj(__the_thread__, JNIHandles::resolve_non_null(handle));
        JavaThreadInObjectWaitState jtiows(thread, ms != 0);
        if (JvmtiExport::should_post_monitor_wait()) {
            JvmtiExport::post_monitor_wait((JavaThread *)__the_thread__, (oop)obj(), ms);
        }
        ObjectSynchronizer::wait(obj, ms, __the_thread__);
        if ((((ThreadShadow*)__the_thread__)->has_pending_exception())) return ; (void)(0);
    }
}

重点在ObjectSynchronizer类的wait静态函数,预处理后的代码如下:

// NOTE: must use heavy weight monitor to handle wait()
void ObjectSynchronizer::wait(Handle obj, jlong millis, Thread* __the_thread__) {
  if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(obj, false, __the_thread__);
  }
  if (millis < 0) {
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
  }
  ObjectMonitor* monitor = ObjectSynchronizer::inflate(__the_thread__, obj());
  monitor->wait(millis, true, __the_thread__);
  dtrace_waited_probe(monitor, obj, __the_thread__);
}

notify方法

notify方法在Hotspot中的实现是文件openjdk8/hotspot/src/share/vm/prims/jvm.cpp中的JVM_MonitorNotify函数,预处理后的代码如下所示:

extern "C" {
    void JNICALL JVM_MonitorNotify(JNIEnv* env, jobject handle) {
        JavaThread* thread=JavaThread::thread_from_jni_environment(env);
        ThreadInVMfromNative __tiv(thread);
        HandleMarkCleaner __hm(thread);
        Thread* __the_thread__ = thread;
        os::verify_stack_alignment();
        Handle obj(__the_thread__, JNIHandles::resolve_non_null(handle));
        ObjectSynchronizer::notify(obj, __the_thread__);
        if ((((ThreadShadow*)__the_thread__)->has_pending_exception())) return ; (void)(0);
    }
}

重点在ObjectSynchronizer类的notify静态函数,预处理后的代码如下:

void ObjectSynchronizer::notify(Handle obj, Thread* __the_thread__) {
 if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(obj, false, __the_thread__);
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }

  markOop mark = obj->mark();
  if (mark->has_locker() && __the_thread__->is_lock_owned((address)mark->locker())) {
    return;
  }
  ObjectSynchronizer::inflate(__the_thread__, obj())->notify(__the_thread__);
}

notifyAll方法

notifyAll方法在Hotspot中的实现是文件openjdk8/hotspot/src/share/vm/prims/jvm.cpp中的JVM_MonitorNotifyAll函数,与JVM_MonitorNotify函数相似,在此不再赘述。

ObjectMonitor类

前面的文章分析了ObjectMonitor类的实现以及enter和exit函数,本节分析wait、notify和notifyAll函数。

wait函数

wait函数代码如下:

void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
   Thread * const Self = THREAD ;
   assert(Self->is_Java_thread(), "Must be Java thread!");
   JavaThread *jt = (JavaThread *)THREAD;

   DeferredInitialize () ;

   // Throw IMSX or IEX.
   CHECK_OWNER(); // 一个宏,检查参数线程是否确实持有该监视器,如果不持有则抛出IllegalMonitorStateException;
   // 如果持有则将_owner保存锁记录指针的情况转为_owner保存线程指针,同时令_recursions = 0,OwnerIsThread = 1
   EventJavaMonitorWait event;

   // check for a pending interrupt
   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) { // 已经被中断时抛出InterruptedException
     // post monitor waited event.  Note that this is past-tense, we are done waiting.
     if (JvmtiExport::should_post_monitor_waited()) {
        // Note: 'false' parameter is passed here because the
        // wait was not timed out due to thread interrupt.
        JvmtiExport::post_monitor_waited(jt, this, false);

        // In this short circuit of the monitor wait protocol, the
        // current thread never drops ownership of the monitor and
        // never gets added to the wait queue so the current thread
        // cannot be made the successor. This means that the
        // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
        // consume an unpark() meant for the ParkEvent associated with
        // this ObjectMonitor.
     }
     if (event.should_commit()) {
       post_monitor_wait_event(&event, 0, millis, false);
     }
     TEVENT (Wait - Throw IEX) ;
     THROW(vmSymbols::java_lang_InterruptedException());
     return ;
   }

   TEVENT (Wait) ;

   assert (Self->_Stalled == 0, "invariant") ;
   Self->_Stalled = intptr_t(this) ;
   jt->set_current_waiting_monitor(this); // 在JavaThread中保存该监视器指针

   // create a node to be put into the queue
   // Critically, after we reset() the event but prior to park(), we must check
   // for a pending interrupt.
   ObjectWaiter node(Self); // 将参数线程包装成ObjectWaiter
   node.TState = ObjectWaiter::TS_WAIT ; // 需要放入WaitSet链表
   Self->_ParkEvent->reset() ;
   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag

   // Enter the waiting queue, which is a circular doubly linked list in this case
   // but it could be a priority queue or any data structure.
   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
   // by the the owner of the monitor *except* in the case where park()
   // returns because of a timeout of interrupt.  Contention is exceptionally rare
   // so we use a simple spin-lock instead of a heavier-weight blocking lock.

   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
   AddWaiter (&node) ; // 将参数线程放入WaitSet链表末尾
   Thread::SpinRelease (&_WaitSetLock) ;

   if ((SyncFlags & 4) == 0) {
      _Responsible = NULL ;
   }
   intptr_t save = _recursions; // record the old recursion count
   _waiters++;                  // increment the number of waiters
   _recursions = 0;             // set the recursion level to be 1
   exit (true, Self) ;                    // exit the monitor 记住参数线程之前是持有该监视器的,调用wait方法会暂时放弃监视器
   guarantee (_owner != Self, "invariant") ;

   // The thread is on the WaitSet list - now park() it.
   // On MP systems it's conceivable that a brief spin before we park
   // could be profitable.
   //
   // TODO-FIXME: change the following logic to a loop of the form
   //   while (!timeout && !interrupted && _notified == 0) park()

   int ret = OS_OK ;
   int WasNotified = 0 ;
   { // State transition wrappers
     OSThread* osthread = Self->osthread();
     OSThreadWaitState osts(osthread, true);
     {
       ThreadBlockInVM tbivm(jt);
       // Thread is in thread_blocked state and oop access is unsafe.
       jt->set_suspend_equivalent();

       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
           // Intentionally empty
       } else
       if (node._notified == 0) { // park参数线程,即之前持有监视器的线程
         if (millis <= 0) {
            Self->_ParkEvent->park () ;
         } else {
            ret = Self->_ParkEvent->park (millis) ;
         }
       }

       // were we externally suspended while we were waiting?
       if (ExitSuspendEquivalent (jt)) {
          // TODO-FIXME: add -- if succ == Self then succ = null.
          jt->java_suspend_self();
       }

     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm


     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
     // from the WaitSet to the EntryList.
     // See if we need to remove Node from the WaitSet.
     // We use double-checked locking to avoid grabbing _WaitSetLock
     // if the thread is not on the wait queue.
     //
     // Note that we don't need a fence before the fetch of TState.
     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
     // written by the is thread. (perhaps the fetch might even be satisfied
     // by a look-aside into the processor's own store buffer, although given
     // the length of the code path between the prior ST and this load that's
     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
     // then we'll acquire the lock and then re-fetch a fresh TState value.
     // That is, we fail toward safety.
     // 之前调用wait方法的线程被其他notify唤醒了,接下来重新竞争监视器,首先将参数线程从WaitSet移除
     if (node.TState == ObjectWaiter::TS_WAIT) {
         Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
         if (node.TState == ObjectWaiter::TS_WAIT) {
            DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
            assert(node._notified == 0, "invariant");
            node.TState = ObjectWaiter::TS_RUN ;
         }
         Thread::SpinRelease (&_WaitSetLock) ;
     }
     // 参数线程肯定不在WaitSet链表了,要么被直接唤醒(见notify函数),要么在EntryList,也可能在cxq
     // The thread is now either on off-list (TS_RUN),
     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
     // The Node's TState variable is stable from the perspective of this thread.
     // No other threads will asynchronously modify TState.
     guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
     OrderAccess::loadload() ;
     if (_succ == Self) _succ = NULL ;
     WasNotified = node._notified ;

     // Reentry phase -- reacquire the monitor.
     // re-enter contended monitor after object.wait().
     // retain OBJECT_WAIT state until re-enter successfully completes
     // Thread state is thread_in_vm and oop access is again safe,
     // although the raw address of the object may have changed.
     // (Don't cache naked oops over safepoints, of course).

     // post monitor waited event. Note that this is past-tense, we are done waiting.
     if (JvmtiExport::should_post_monitor_waited()) {
       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);

       if (node._notified != 0 && _succ == Self) {
         // In this part of the monitor wait-notify-reenter protocol it
         // is possible (and normal) for another thread to do a fastpath
         // monitor enter-exit while this thread is still trying to get
         // to the reenter portion of the protocol.
         //
         // The ObjectMonitor was notified and the current thread is
         // the successor which also means that an unpark() has already
         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
         // consume the unpark() that was done when the successor was
         // set because the same ParkEvent is shared between Java
         // monitors and JVM/TI RawMonitors (for now).
         //
         // We redo the unpark() to ensure forward progress, i.e., we
         // don't want all pending threads hanging (parked) with none
         // entering the unlocked monitor.
         node._event->unpark();
       }
     }

     if (event.should_commit()) {
       post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
     }

     OrderAccess::fence() ;

     assert (Self->_Stalled != 0, "invariant") ;
     Self->_Stalled = 0 ;

     assert (_owner != Self, "invariant") ; // 被唤醒后该监视器并不由参数线程持有
     ObjectWaiter::TStates v = node.TState ;
     if (v == ObjectWaiter::TS_RUN) {
         enter (Self) ;
     } else {
         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
         ReenterI (Self, &node) ;
         node.wait_reenter_end(this);
     }

     // Self has reacquired the lock.
     // Lifecycle - the node representing Self must not appear on any queues.
     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
     // want residual elements associated with this thread left on any lists.
     guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
     assert    (_owner == Self, "invariant") ; // 至此经过上面的enter或者ReenterI后,参数线程重新获得了该监视器
     assert    (_succ != Self , "invariant") ;
   } // OSThreadWaitState()

   jt->set_current_waiting_monitor(NULL); // 参数线程没有在任何监视器上wait

   guarantee (_recursions == 0, "invariant") ;
   _recursions = save;     // restore the old recursion count
   _waiters--;             // decrement the number of waiters

   // Verify a few postconditions
   assert (_owner == Self       , "invariant") ;
   assert (_succ  != Self       , "invariant") ;
   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;

   if (SyncFlags & 32) {
      OrderAccess::fence() ;
   }
   // 如果不是被notify的,检查是否是由中断造成的(中断也会unpark线程),如果是则抛出InterruptedException;否则就是wait超时
   // check if the notification happened
   if (!WasNotified) { // 注意看调用Thread::is_interrupted时第二个参数是true,会清除线程的中断状态
     // no, it could be timeout or Thread.interrupt() or both
     // check for interrupt event, otherwise it is timeout 
     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
       TEVENT (Wait - throw IEX from epilog) ;
       THROW(vmSymbols::java_lang_InterruptedException());
     }
   }

   // NOTE: Spurious wake up will be consider as timeout.
   // Monitor notify has precedence over thread interrupt.
}

wait函数按以下顺序做了几件事:

  1. 检查参数线程是否确实持有该监视器,如果不持有则抛出IllegalMonitorStateException;
  2. 检查是否已经被中断,如果是则抛出InterruptedException;
  3. 参数线程把自己放入_WaitSet链表末尾,然后调用ObjectMonitor::exit函数放弃该监视器,最后使用ParkEvent的park函数阻塞自己;
  4. 参数线程被其他notify唤醒之后重新竞争监视器,它先把自己从WaitSet移除,这时它可能在EntryList,也可能在cxq,还可能两者均不在。经过enter或者ReenterI后,参数线程重新获得了该监视器;
  5. 最后判断如果不是被notify的,检查是否是由中断造成的(中断也会unpark线程),如果是则抛出InterruptedException,同时清除线程的中断状态;否则就是wait超时。

notify函数

notifyAll函数与notify函数相似,只看一下notify函数是如何实现的:

void ObjectMonitor::notify(TRAPS) {
  CHECK_OWNER(); // 与wait函数一样的检查_owner
  if (_WaitSet == NULL) {
     TEVENT (Empty-Notify) ;
     return ;
  }
  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);

  int Policy = Knob_MoveNotifyee ; // Knob_MoveNotifyee全局变量,notify策略

  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  ObjectWaiter * iterator = DequeueWaiter() ; // 将WaitSet中的第一个线程出队
  if (iterator != NULL) {
     TEVENT (Notify1 - Transfer) ;
     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ; // 原来一定是在WaitSet中
     guarantee (iterator->_notified == 0, "invariant") ;
     if (Policy != 4) {
        iterator->TState = ObjectWaiter::TS_ENTER ;
     }
     iterator->_notified = 1 ; // 告诉被唤醒的线程是被notify唤醒的,因为wait函数末尾还会有判断是不是中断唤醒的
     Thread * Self = THREAD;
     iterator->_notifier_tid = Self->osthread()->thread_id(); // 告诉被唤醒的线程是谁唤醒的,内核线程ID

     ObjectWaiter * List = _EntryList ;
     if (List != NULL) {
        assert (List->_prev == NULL, "invariant") ;
        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
        assert (List != iterator, "invariant") ;
     }

     if (Policy == 0) {       // prepend to EntryList 如果Knob_MoveNotifyee是0,将WaitSet的第一个链接到EntyrList前面
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
             List->_prev = iterator ;
             iterator->_next = List ;
             iterator->_prev = NULL ;
             _EntryList = iterator ;
        }
     } else
     if (Policy == 1) {      // append to EntryList 如果Knob_MoveNotifyee是1,将WaitSet的第一个链接到EntyrList后面
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
            // CONSIDER:  finding the tail currently requires a linear-time walk of
            // the EntryList.  We can make tail access constant-time by converting to
            // a CDLL instead of using our current DLL.
            ObjectWaiter * Tail ;
            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
            Tail->_next = iterator ;
            iterator->_prev = Tail ;
            iterator->_next = NULL ;
        }
     } else
     if (Policy == 2) {      // prepend to cxq 如果Knob_MoveNotifyee是2,将WaitSet的第一个链接到cxq前面
         // prepend to cxq
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
            iterator->TState = ObjectWaiter::TS_CXQ ;
            for (;;) {
                ObjectWaiter * Front = _cxq ;
                iterator->_next = Front ;
                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
                    break ;
                }
            }
         }
     } else
     if (Policy == 3) {      // append to cxq 如果Knob_MoveNotifyee是3,将WaitSet的第一个链接到cxq后面
        iterator->TState = ObjectWaiter::TS_CXQ ;
        for (;;) {
            ObjectWaiter * Tail ;
            Tail = _cxq ;
            if (Tail == NULL) {
                iterator->_next = NULL ;
                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
                   break ;
                }
            } else {
                while (Tail->_next != NULL) Tail = Tail->_next ;
                Tail->_next = iterator ;
                iterator->_prev = Tail ;
                iterator->_next = NULL ;
                break ;
            }
        }
     } else { // 其他情况,直接唤醒WaitSet的第一个线程使其运行,不加入EntryList或cxq
        ParkEvent * ev = iterator->_event ;
        iterator->TState = ObjectWaiter::TS_RUN ;
        OrderAccess::fence() ;
        ev->unpark() ;
     }

     if (Policy < 4) {
       iterator->wait_reenter_begin(this);
     }

     // _WaitSetLock protects the wait queue, not the EntryList.  We could
     // move the add-to-EntryList operation, above, outside the critical section
     // protected by _WaitSetLock.  In practice that's not useful.  With the
     // exception of  wait() timeouts and interrupts the monitor owner
     // is the only thread that grabs _WaitSetLock.  There's almost no contention
     // on _WaitSetLock so it's not profitable to reduce the length of the
     // critical section.
  }

  Thread::SpinRelease (&_WaitSetLock) ;

  if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
     ObjectMonitor::_sync_Notifications->inc() ;
  }
}
  1. 执行与wait函数一样的检查_owner等工作;
  2. 将WaitSet中的第一个线程出队,根据Knob_MoveNotifyee的不同值做不同的处理:
    • Knob_MoveNotifyee是0时,将WaitSet的第一个线程链接到EntyrList前面;
    • Knob_MoveNotifyee是1时,将WaitSet的第一个线程链接到EntryList后面;
    • Knob_MoveNotifyee是2时,将WaitSet的第一个线程链接到cxq前面;
    • Knob_MoveNotifyee是3时,将WaitSet的第一个线程链接到cxq后面;
    • 其他情况,直接唤醒WaitSet的第一个线程使其运行,不加入EntryList或cxq。

监视器原理图

目前,较为常见的监视器原理图如下,我暂时没有找到这张图的原始出处。


monitor.png

经过这一系列文章的分析,上图Entry Set和Wait Set的含义逐渐清晰,但不知为何没有cxq。

上一篇下一篇

猜你喜欢

热点阅读