Redis消息队列

2020-07-23  本文已影响0人  阳公子_

一、概述

消息队列,Message Queue,常用于解决并发系统中的资源一致性问题,提升峰值的处理能力,同时保证消息的顺序性、可恢复性、必送达性,对应用进行解耦,或者实现异步通讯等。市面上的 MQ应用有很多(例如:Kafka,RabbitMQ,Disque),同时也可以基于 Redis 来实现,比较典型的方案有:

二、实现

1、基于List的LPUSH+BRPOP的实现
LPUSH,将消息放入消息队列(生产者)
BRPOP,从队列中取出消息,阻塞模式(消费者)

TBase中不支持BRPOP,只支持RPOP,BRPOP是RPOP的阻塞版本
该模式优点:

2、PUB/SUB,订阅/发布模式
SUBSCRIBE,用于订阅信道
PUBLISH,向信道发送消息
UNSUBSCRIBE,取消订阅

生产者和消费者通过相同的一个信道(Channel)进行交互。信道其实也就是队列。通常会有多个消费者。多个消费者订阅同一个信道,当生产者向信道发布消息时,该信道会立即将消息逐一发布给每个消费者。可见,该信道对于消费者是发散的信道,每个消费者都可以得到相同的消息。典型的对多的关系。
该模式优点:

3、基于SortedSet有序集合的实现
ZADD KEY score member,压入集合
ZRANGEBYSCORE,依据score获取成员

有序集合的方案是在自己确定消息顺ID时比较常用,使用集合成员的Score来作为消息ID,保证顺序,还可以保证消息ID的单调递增。通常可以使用时间戳+序号的方案。确保了消息ID的单调递增,利用SortedSet的依据Score排序的特征,就可以制作一个有序的消息队列了。
和上面的方案相比,优点就是可以自定义消息ID,在消息ID有意义时,比较重要。缺点也明显,不允许重复消息(以为是集合),同时消息ID确定有错误会导致消息的顺序出错。

4、基于stream实现

TBase还不支持该数据结构
Redis5.0中发布的Stream类型,也用来实现典型的消息队列。该Stream类型的出现,几乎满足了消息队列具备的全部内容,包括但不限于:

127.0.0.1:6379> XADD memberMessage * user kang msg Hello
"1553439850328-0"
127.0.0.1:6379> XADD memberMessage * user zhong  msg nihao
"1553439858868-0"

语法格式为:

XADD key ID field string [field string ...]

需要提供key,消息ID方案,消息内容,其中消息内容为key-value型数据。 ID,最常使用*,表示由Redis生成消息ID,这也是强烈建议的方案。field string [field string]就是当前消息内容,由1个或多个key-value构成。
上面的例子中,在memberMemsages这个key中追加了user kang msg Hello这个消息。Redis使用毫秒时间戳和序号生成了消息ID。此时,消息队列中就有一个消息可用了。

从消息队列中获取消息,XREAD,消费消息
XREAD,从Stream中读取消息,演示如下:

127.0.0.1:6379> XREAD streams memberMessage 0
1) 1) "memberMessage"
   2) 1) 1) "1553439850328-0"
         2) 1) "user"
            2) "kang"
            3) "msg"
            4) "Hello"
      2) 1) "1553439858868-0"
         2) 1) "user"
            2) "zhong"
            3) "msg"
            4) "nihao"

语法格式为:

XREAD [COUNT count] [BLOCK milliseconds] STREAMS key [key ...] ID [ID ...]
127.0.0.1:6379> XPENDING mq mqGroup # mpGroup的Pending情况
1) (integer) 5 # 5个已读取但未处理的消息
2) "1553585533795-0" # 起始ID
3) "1553585533795-4" # 结束ID
4) 1) 1) "consumerA" # 消费者A有3个
      2) "3"
   2) 1) "consumerB" # 消费者B有1个
      2) "1"
   3) 1) "consumerC" # 消费者C有1个
      2) "1"
​
127.0.0.1:6379> XPENDING mq mqGroup - + 10 # 使用 start end count 选项可以获取详细信息
1) 1) "1553585533795-0" # 消息ID
   2) "consumerA" # 消费者
   3) (integer) 1654355 # 从读取到现在经历了1654355ms,IDLE
   4) (integer) 5 # 消息被读取了5次,delivery counter
2) 1) "1553585533795-1"
   2) "consumerA"
   3) (integer) 1654355
   4) (integer) 4
# 共5个,余下3个省略 ...
​
127.0.0.1:6379> XPENDING mq mqGroup - + 10 consumerA # 在加上消费者参数,获取具体某个消费者的Pending列表
1) 1) "1553585533795-0"
   2) "consumerA"
   3) (integer) 1641083
   4) (integer) 5
# 共3个,余下2个省略 ...

每个Pending的消息有4个属性:

127.0.0.1:6379> XACK mq mqGroup 1553585533795-0 # 通知消息处理结束,用消息ID标识
(integer) 1
​
127.0.0.1:6379> XPENDING mq mqGroup # 再次查看Pending列表
1) (integer) 4 # 已读取但未处理的消息已经变为4个
2) "1553585533795-1"
3) "1553585533795-4"
4) 1) 1) "consumerA" # 消费者A,还有2个消息处理
      2) "2"
   2) 1) "consumerB"
      2) "1"
   3) 1) "consumerC"
      2) "1"

有了这样一个Pending机制,就意味着在某个消费者读取消息但未处理后,消息是不会丢失的。等待消费者再次上线后,可以读取该Pending列表,就可以继续处理该消息了,保证消息的有序和不丢失。
此时还有一个问题,就是若某个消费者宕机之后,没有办法再上线了,那么就需要将该消费者Pending的消息,转义给其他的消费者处理,就是消息转移。

消息转移
消息转移的操作时将某个消息转移到自己的Pending列表中。使用语法XCLAIM来实现,需要设置组、转移的目标消费者和消息ID,同时需要提供IDLE(已被读取时长),只有超过这个时长,才能被转移。演示如下:

# 当前属于消费者A的消息1553585533795-1,已经15907,787ms未处理了
127.0.0.1:6379> XPENDING mq mqGroup - + 10
1) 1) "1553585533795-1"
   2) "consumerA"
   3) (integer) 15907787
   4) (integer) 4
​
# 转移超过3600s的消息1553585533795-1到消费者B的Pending列表
127.0.0.1:6379> XCLAIM mq mqGroup consumerB 3600000 1553585533795-1
1) 1) "1553585533795-1"
   2) 1) "msg"
      2) "2"
​
# 消息1553585533795-1已经转移到消费者B的Pending中。
127.0.0.1:6379> XPENDING mq mqGroup - + 10
1) 1) "1553585533795-1"
   2) "consumerB"
   3) (integer) 84404 # 注意IDLE,被重置了
   4) (integer) 5 # 注意,读取次数也累加了1次

以上代码,完成了一次消息转移。转移除了要指定ID外,还需要指定IDLE,保证是长时间未处理的才被转移。被转移的消息的IDLE会被重置,用以保证不会被重复转移,以为可能会出现将过期的消息同时转移给多个消费者的并发操作,设置了IDLE,则可以避免后面的转移不会成功,因为IDLE不满足条件。例如下面的连续两条转移,第二条不会成功。

127.0.0.1:6379> XCLAIM mq mqGroup consumerB 3600000 1553585533795-1
127.0.0.1:6379> XCLAIM mq mqGroup consumerC 3600000 1553585533795-1

这就是消息转移。至此我们使用了一个Pending消息的ID,所属消费者和IDLE的属性,还有一个属性就是消息被读取次数,delivery counter,该属性的作用由于统计消息被读取的次数,包括被转移也算。这个属性主要用在判定是否为错误数据上。

坏消息问题,Dead Letter,死信问题
正如上面所说,如果某个消息,不能被消费者处理,也就是不能被XACK,这是要长时间处于Pending列表中,即使被反复的转移给各个消费者也是如此。此时该消息的delivery counter就会累加(上一节的例子可以看到),当累加到某个我们预设的临界值时,我们就认为是坏消息(也叫死信,DeadLetter,无法投递的消息),由于有了判定条件,我们将坏消息处理掉即可,删除即可。删除一个消息,使用XDEL语法,演示如下:

# 删除队列中的消息
127.0.0.1:6379> XDEL mq 1553585533795-1
(integer) 1
# 查看队列中再无此消息
127.0.0.1:6379> XRANGE mq - +
1) 1) "1553585533795-0"
   2) 1) "msg"
      2) "1"
2) 1) "1553585533795-2"
   2) 1) "msg"
      2) "3"

注意本例中,并没有删除Pending中的消息因此你查看Pending,消息还会在。可以执行XACK标识其处理完毕!

信息监控,XINFO
Stream提供了XINFO来实现对服务器信息的监控,可以查询、查看队列信息:

127.0.0.1:6379> Xinfo stream mq
 1) "length"
 2) (integer) 7
 3) "radix-tree-keys"
 4) (integer) 1
 5) "radix-tree-nodes"
 6) (integer) 2
 7) "groups"
 8) (integer) 1
 9) "last-generated-id"
10) "1553585533795-9"
11) "first-entry"
12) 1) "1553585533795-3"
    2) 1) "msg"
       2) "4"
13) "last-entry"
14) 1) "1553585533795-9"
    2) 1) "msg"
       2) "10"

消费组信息:

127.0.0.1:6379> Xinfo groups mq
1) 1) "name"
   2) "mqGroup"
   3) "consumers"
   4) (integer) 3
   5) "pending"
   6) (integer) 3
   7) "last-delivered-id"
   8) "1553585533795-4"

消费者组成员信息:

127.0.0.1:6379> XINFO CONSUMERS mq mqGroup
1) 1) "name"
   2) "consumerA"
   3) "pending"
   4) (integer) 1
   5) "idle"
   6) (integer) 18949894
2) 1) "name"
   2) "consumerB"
   3) "pending"
   4) (integer) 1
   5) "idle"
   6) (integer) 3092719
3) 1) "name"
   2) "consumerC"
   3) "pending"
   4) (integer) 1
   5) "idle"
   6) (integer) 23683256


命令一览

命令 说明
XACK 结束Pending
XADD 生成消息
XCLAIM 消息转移
XDEL 删除消息
XGROUP 消费组管理
XINFO 得到消费组信息
XLEN 消息队列长度
Pending列表 Pending列表
XRANGE 获取消息队列中消息
XREAD 消费消息
XREADGROUP 分组消费消息
XREVRANGE 逆序获取消息队列中消息
XTRIM 消息队列容量

Reference

[1] 基于Redis实现消息队列典型方案
[2] Stream 类型

上一篇 下一篇

猜你喜欢

热点阅读