Algorithms

优先级队列

2018-03-21  本文已影响0人  null12

一、定义

优先级队列有很多种实现方式。其中使用“堆”来实现“优先队列”是最常见的,堆的底层是完全二叉树的形式。

1-0 堆的示意图

上述是一个小顶堆(最小堆)的示意图

最小堆是一种经过排序的完全二叉树,其中任一非终端节点的数据值均不大于其左子节点和右子节点的值。

二、API

2-0 大顶堆的API定义

2.1 上浮和下沉

堆的操作中,最重要的就是堆元素的上浮和下沉操作:

private void swim(int k) {
    while (k > 1 && (a[k]>a[k/2])) {
        exch(k, k/2);  //交换元素
        k = k/2;
    }
}
private void sink(int k) {
    while (2*k <= n) {
        //j指向k的较小的子结点
        int j = 2*k;
        if (j < n && less(j, j+1)) j++;
        if (!less(k, j)) break;
        swap(k, j);
        k = j;
    }
}

2.2 插入元素

新增元素添加到树的底层最右侧,然后上浮。


2-2-1 大顶堆的插入

2.3 删除最大元素

将树的最后一个元素与第一个元素交换,删除最后一个元素,然后从堆顶开始下沉。


2-3-1 大顶堆删除最大元素

三、完整实现

3.1 大顶堆

3-1-1 大顶堆的操作用例
public class MaxPQ<Key> implements Iterable<Key> {
    private Key[] pq;                    // store items at indices 1 to n
    private int n;                       // number of items on priority queue
    private Comparator<Key> comparator;  // optional comparator

    /**
     * Initializes an empty priority queue with the given initial capacity.
     *
     * @param  initCapacity the initial capacity of this priority queue
     */
    public MaxPQ(int initCapacity) {
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    /**
     * Initializes an empty priority queue.
     */
    public MaxPQ() {
        this(1);
    }

    /**
     * Initializes an empty priority queue with the given initial capacity,
     * using the given comparator.
     *
     * @param  initCapacity the initial capacity of this priority queue
     * @param  comparator the order in which to compare the keys
     */
    public MaxPQ(int initCapacity, Comparator<Key> comparator) {
        this.comparator = comparator;
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    /**
     * Initializes an empty priority queue using the given comparator.
     *
     * @param  comparator the order in which to compare the keys
     */
    public MaxPQ(Comparator<Key> comparator) {
        this(1, comparator);
    }

    /**
     * Initializes a priority queue from the array of keys.
     * Takes time proportional to the number of keys, using sink-based heap construction.
     *
     * @param  keys the array of keys
     */
    public MaxPQ(Key[] keys) {
        n = keys.length;
        pq = (Key[]) new Object[keys.length + 1];
        for (int i = 0; i < n; i++)
            pq[i+1] = keys[i];
        for (int k = n/2; k >= 1; k--)
            sink(k);
        assert isMaxHeap();
    }
      
    /**
     * Returns true if this priority queue is empty.
     *
     * @return {@code true} if this priority queue is empty;
     *         {@code false} otherwise
     */
    public boolean isEmpty() {
        return n == 0;
    }

    /**
     * Returns the number of keys on this priority queue.
     *
     * @return the number of keys on this priority queue
     */
    public int size() {
        return n;
    }

    /**
     * Returns a largest key on this priority queue.
     *
     * @return a largest key on this priority queue
     * @throws NoSuchElementException if this priority queue is empty
     */
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        return pq[1];
    }

    // helper function to double the size of the heap array
    private void resize(int capacity) {
        assert capacity > n;
        Key[] temp = (Key[]) new Object[capacity];
        for (int i = 1; i <= n; i++) {
            temp[i] = pq[i];
        }
        pq = temp;
    }

    /**
     * Adds a new key to this priority queue.
     *
     * @param  x the new key to add to this priority queue
     */
    public void insert(Key x) {

        // double size of array if necessary
        if (n == pq.length - 1) resize(2 * pq.length);

        // add x, and percolate it up to maintain heap invariant
        pq[++n] = x;
        swim(n);
        assert isMaxHeap();
    }

    /**
     * Removes and returns a largest key on this priority queue.
     *
     * @return a largest key on this priority queue
     * @throws NoSuchElementException if this priority queue is empty
     */
    public Key delMax() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        Key max = pq[1];
        exch(1, n--);
        sink(1);
        pq[n+1] = null;     // to avoid loiterig and help with garbage collection
        if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
        assert isMaxHeap();
        return max;
    }

   /***************************************************************************
    * Helper functions to restore the heap invariant.
    ***************************************************************************/
    private void swim(int k) {
        while (k > 1 && less(k/2, k)) {
            exch(k, k/2);
            k = k/2;
        }
    }

    private void sink(int k) {
        while (2*k <= n) {
            int j = 2*k;
            if (j < n && less(j, j+1)) j++;
            if (!less(k, j)) break;
            exch(k, j);
            k = j;
        }
    }

   /***************************************************************************
    * Helper functions for compares and swaps.
    ***************************************************************************/
    private boolean less(int i, int j) {
        if (comparator == null) {
            return ((Comparable<Key>) pq[i]).compareTo(pq[j]) < 0;
        }
        else {
            return comparator.compare(pq[i], pq[j]) < 0;
        }
    }

    private void exch(int i, int j) {
        Key swap = pq[i];
        pq[i] = pq[j];
        pq[j] = swap;
    }

    // is pq[1..N] a max heap?
    private boolean isMaxHeap() {
        return isMaxHeap(1);
    }

    // is subtree of pq[1..n] rooted at k a max heap?
    private boolean isMaxHeap(int k) {
        if (k > n) return true;
        int left = 2*k;
        int right = 2*k + 1;
        if (left  <= n && less(k, left))  return false;
        if (right <= n && less(k, right)) return false;
        return isMaxHeap(left) && isMaxHeap(right);
    }

    /**
     * Returns an iterator that iterates over the keys on this priority queue
     * in descending order.
     * The iterator doesn't implement {@code remove()} since it's optional.
     *
     * @return an iterator that iterates over the keys in descending order
     */
    public Iterator<Key> iterator() {
        return new HeapIterator();
    }

    private class HeapIterator implements Iterator<Key> {
        // create a new pq
        private MaxPQ<Key> copy;

        // add all items to copy of heap
        // takes linear time since already in heap order so no keys move
        public HeapIterator() {
            if (comparator == null) copy = new MaxPQ<Key>(size());
            else                    copy = new MaxPQ<Key>(size(), comparator);
            for (int i = 1; i <= n; i++)
                copy.insert(pq[i]);
        }
        public boolean hasNext()  { return !copy.isEmpty();                     }
        public void remove()      { throw new UnsupportedOperationException();  }
        public Key next() {
            if (!hasNext()) throw new NoSuchElementException();
            return copy.delMax();
        }
    }
}

3.2 小顶堆

public class MinPQ<Key> implements Iterable<Key> {
    private Key[] pq;                    // store items at indices 1 to n
    private int n;                       // number of items on priority queue
    private Comparator<Key> comparator;  // optional comparator

    /**
     * Initializes an empty priority queue with the given initial capacity.
     *
     * @param  initCapacity the initial capacity of this priority queue
     */
    public MinPQ(int initCapacity) {
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    /**
     * Initializes an empty priority queue.
     */
    public MinPQ() {
        this(1);
    }

    /**
     * Initializes an empty priority queue with the given initial capacity,
     * using the given comparator.
     *
     * @param  initCapacity the initial capacity of this priority queue
     * @param  comparator the order in which to compare the keys
     */
    public MinPQ(int initCapacity, Comparator<Key> comparator) {
        this.comparator = comparator;
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    /**
     * Initializes an empty priority queue using the given comparator.
     *
     * @param  comparator the order in which to compare the keys
     */
    public MinPQ(Comparator<Key> comparator) {
        this(1, comparator);
    }

    /**
     * Initializes a priority queue from the array of keys.
     * <p>
     * Takes time proportional to the number of keys, using sink-based heap construction.
     *
     * @param  keys the array of keys
     */
    public MinPQ(Key[] keys) {
        n = keys.length;
        pq = (Key[]) new Object[keys.length + 1];
        for (int i = 0; i < n; i++)
            pq[i+1] = keys[i];
        for (int k = n/2; k >= 1; k--)
            sink(k);
        assert isMinHeap();
    }

    /**
     * Returns true if this priority queue is empty.
     *
     * @return {@code true} if this priority queue is empty;
     *         {@code false} otherwise
     */
    public boolean isEmpty() {
        return n == 0;
    }

    /**
     * Returns the number of keys on this priority queue.
     *
     * @return the number of keys on this priority queue
     */
    public int size() {
        return n;
    }

    /**
     * Returns a smallest key on this priority queue.
     *
     * @return a smallest key on this priority queue
     * @throws NoSuchElementException if this priority queue is empty
     */
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        return pq[1];
    }

    // helper function to double the size of the heap array
    private void resize(int capacity) {
        assert capacity > n;
        Key[] temp = (Key[]) new Object[capacity];
        for (int i = 1; i <= n; i++) {
            temp[i] = pq[i];
        }
        pq = temp;
    }

    /**
     * Adds a new key to this priority queue.
     *
     * @param  x the key to add to this priority queue
     */
    public void insert(Key x) {
        // double size of array if necessary
        if (n == pq.length - 1) resize(2 * pq.length);

        // add x, and percolate it up to maintain heap invariant
        pq[++n] = x;
        swim(n);
        assert isMinHeap();
    }

    /**
     * Removes and returns a smallest key on this priority queue.
     *
     * @return a smallest key on this priority queue
     * @throws NoSuchElementException if this priority queue is empty
     */
    public Key delMin() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        Key min = pq[1];
        exch(1, n--);
        sink(1);
        pq[n+1] = null;     // to avoid loiterig and help with garbage collection
        if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
        assert isMinHeap();
        return min;
    }

   /***************************************************************************
    * Helper functions to restore the heap invariant.
    ***************************************************************************/
    private void swim(int k) {
        while (k > 1 && greater(k/2, k)) {
            exch(k, k/2);
            k = k/2;
        }
    }

    private void sink(int k) {
        while (2*k <= n) {
            int j = 2*k;
            if (j < n && greater(j, j+1)) j++;
            if (!greater(k, j)) break;
            exch(k, j);
            k = j;
        }
    }

   /***************************************************************************
    * Helper functions for compares and swaps.
    ***************************************************************************/
    private boolean greater(int i, int j) {
        if (comparator == null) {
            return ((Comparable<Key>) pq[i]).compareTo(pq[j]) > 0;
        }
        else {
            return comparator.compare(pq[i], pq[j]) > 0;
        }
    }

    private void exch(int i, int j) {
        Key swap = pq[i];
        pq[i] = pq[j];
        pq[j] = swap;
    }

    // is pq[1..N] a min heap?
    private boolean isMinHeap() {
        return isMinHeap(1);
    }

    // is subtree of pq[1..n] rooted at k a min heap?
    private boolean isMinHeap(int k) {
        if (k > n) return true;
        int left = 2*k;
        int right = 2*k + 1;
        if (left  <= n && greater(k, left))  return false;
        if (right <= n && greater(k, right)) return false;
        return isMinHeap(left) && isMinHeap(right);
    }

    /**
     * Returns an iterator that iterates over the keys on this priority queue
     * in ascending order.
     * <p>
     * The iterator doesn't implement {@code remove()} since it's optional.
     *
     * @return an iterator that iterates over the keys in ascending order
     */
    public Iterator<Key> iterator() {
        return new HeapIterator();
    }

    private class HeapIterator implements Iterator<Key> {
        // create a new pq
        private MinPQ<Key> copy;

        // add all items to copy of heap
        // takes linear time since already in heap order so no keys move
        public HeapIterator() {
            if (comparator == null) copy = new MinPQ<Key>(size());
            else                    copy = new MinPQ<Key>(size(), comparator);
            for (int i = 1; i <= n; i++)
                copy.insert(pq[i]);
        }
        
        public boolean hasNext()  { return !copy.isEmpty();                     }
        public void remove()      { throw new UnsupportedOperationException();  }
        public Key next() {
            if (!hasNext()) throw new NoSuchElementException();
            return copy.delMin();
        }
    }
}

四、性能分析

上一篇下一篇

猜你喜欢

热点阅读