奥数自学研究

高中奥数 2022-03-04

2022-03-04  本文已影响0人  不为竞赛学奥数

2022-03-04-01

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P026 习题09)

求证:对任意c>0,存在正整数n和复数列a_{1},a_{2},\cdots a_{n},使c\cdot\dfrac{1}{2^{n}}\sum\limits_{\varepsilon_{1},\varepsilon_{2},\cdots,\varepsilon_{n}}\left|\varepsilon_{1}a_{1}+\varepsilon_{2}a_{2}+\cdots+\varepsilon_{n}a_{n}\right|<\left(\sum\limits_{j=1}^{n}\left|a_{j}\right|^{\frac{3}{2}}\right)^{\frac{2}{3}}.其中\varepsilon_{j}\in \left\{-1,1\right\},j=1,2,\cdots ,n.

证明

考虑
\begin{aligned} S&=\sum\limits_{\varepsilon_{1},\varepsilon_{2},\cdots,\varepsilon_{n}}\left|\varepsilon_{1}a_{1}+\varepsilon_{2}a_{2}+\cdots+\varepsilon_{n}a_{n}\right|^{2}\\ &=\sum\limits_{\varepsilon_{1},\varepsilon_{2},\cdots,\varepsilon_{n}}\left(\varepsilon_{1}a_{1}+\varepsilon_{2}a_{2}+\cdots+\varepsilon_{n}a_{n}\right)\left(\varepsilon_{1}\bar{a_{1}}+\varepsilon_{2}\bar{a_{2}}+\cdots+\varepsilon_{n}\bar{a_{n}}\right)\\ &=\sum\limits_{\varepsilon_{1},\varepsilon_{2},\cdots,\varepsilon_{n}}\left(\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\cdots+\left|a_{n}\right|^{2}+\sum\limits_{i\neq j}a_{i}\bar{a_{j}}\varepsilon_{i}\varepsilon_{j}\right). \end{aligned}
不妨取\left|a_{i}\right|=1,i=1,2,\cdots,n,则
\begin{aligned} S&=n\cdot 2^{n}+\sum\limits_{\varepsilon_{1},\varepsilon_{2},\cdots,\varepsilon_{n}}\sum\limits_{i\neq j}a_{i}\bar{a_{j}}\varepsilon_{i}\varepsilon_{j}\\ &=n\cdot 2^{n}+\sum\limits_{i\neq j}a_{i}\bar{a_{j}}\sum\limits_{\varepsilon_{1},\varepsilon_{2},\cdots,\varepsilon_{n}}\varepsilon_{i}\varepsilon_{j}\\ &=n\cdot 2^{n}. \end{aligned}
现要求n^{\frac{2}{3}}>c\cdot \dfrac{1}{2^{n}}\cdot\sum\limits_{\varepsilon_{1},\varepsilon_{2},\cdots,\varepsilon_{n}}\left|\varepsilon_{1}a_{1}+\varepsilon_{2}a_{2}+\cdots+\varepsilon_{n}a_{n}\right|,只需c\cdot\sqrt{\dfrac{S}{2^{n}}}=c\cdot\sqrt{n}\leqslant n^{\frac{2}{3}},即n^{\frac{1}{6}}\geqslant c,故取n\geqslant c^{6}即可.

2022-03-04-02

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P027 习题10)

ab是正常数,\theta\in \left(0,\dfrac{\pi}{2}\right),求y=a\sqrt{\sin \theta}+b\sqrt{\cos \theta}的最大值.

\sqrt{u}=a\cdot \sqrt{\sin \theta},\sqrt{v}=b\cdot \sqrt{\cos \theta},则条件转化为\dfrac{u^{2}}{a^{4}}+\dfrac{v^{2}}{b^{4}}=1,uv\geqslant 0,利用Cauchy不等式,
\begin{aligned} y&=\sqrt{u}+\sqrt{v}\\ &\leqslant \sqrt{\left(\dfrac{u}{a^{2}}-\dfrac{7}{b^{5}}\right)\left(a^{4}+b^{4}\right)}\\ &\leqslant \sqrt{\sqrt{\left(\dfrac{u^{2}}{a^{4}}+\dfrac{v^{2}}{b^{4}}\right)\left(a^{\frac{4}{3}}+b^{\frac{4}{3}}\right)}\cdot \left(a^{\frac{4}{3}}+b^{\frac{4}{3}}\right)}\\ &=\left(a^{\frac{4}{3}}+b^{\frac{4}{3}}\right)^{\frac{3}{4}}, \end{aligned}
并且易求得等号成立的条件.

注:在求解过程中,幂次都可以用待定系数法来确定.

2022-03-04-03

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P027 习题11)

n个实数,它们的绝对值都小于等于2,其立方和为0.求证:它们的和\leqslant \dfrac{2}{3}n.

证明

记这n个实数为y_{1},y_{2},\cdots ,y_{n}.令x_{i}=\dfrac{y_{i}}{2},则\left|x_{i}\right|\leqslant 1,\sum\limits_{i=1}{n}x_{i}^{3}=0.要证明:\sum\limits_{i=1}{n}x_{i}^{3}\leqslant \dfrac{1}{3}n用待定系数法:设x_{i}\leqslant \dfrac{1}{3}+\lambda x_{i}^{3}.令x=\cos \theta,由三倍角公式易知\lambda=\dfrac{4}{3}可使上式成立,从而原不等式获证.

2022-03-04-04

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P027 习题12)

已知正整数n\geqslant 3,\left[-1,1\right]中的实数x_{1},x_{2},\cdots ,x_{n}满足:\sum\limits_{k=1}^{n}x_{k}^{5}=0.求证:\sum\limits_{k=1}^{n}x_{k}\leqslant \dfrac{8}{15}n.

证明

由于x_{k}\in \left[-1,1\right],则0\leqslant \left(1+x_{k}\right)\left(Bx_{k}-1\right)^{4},这里B是一个待定实数,展开,得:B^{4}x_{k}^{5}+\left(B^{4}-4B^{3}\right)x_{k}^{4}+B^{2}\left(6-4B\right)x_{k}^{3}+B\left(4B-6\right)x_{k}^{2}+\left(1-B\right)x_{k}+1\geqslant 0.

B=\dfrac{3}{2},从上式得\dfrac{81}{16}x_{k}^{5}-\dfrac{135}{16}x_{k}^{4}+\dfrac{15}{2}x_{k}^{2}-5x_{k}+1\geqslant 0.对k从1到n求和,即有
\begin{aligned} 5\sum\limits_{k=1}^{n}{x_{k}}&\leqslant n-\dfrac{135}{16}\sum\limits_{k=1}^{n}x_{k}^{4}+\dfrac{15}{2}\sum\limits_{k=1}^{n}x_{k}^{2}\\ &=n+\dfrac{15}{2}\left(\sum\limits_{k=1}^{n}x_{k}^{2}-\dfrac{9}{8}\sum\limits_{k=1}^{n}x_{k}^{4}\right)\\ &\leqslant n+\dfrac{15}{2}\cdot\dfrac{2}{9}n\\ &=\dfrac{8}{3}n, \end{aligned}
\sum\limits_{k=1}^{n}x_{k}\leqslant \dfrac{8}{15}n.

上一篇 下一篇

猜你喜欢

热点阅读