248. 统计比给定整数小的数的个数

2018-02-02  本文已影响34人  6默默Welsh

描述

给定一个整数数组 (下标由 0 到 n-1,其中 n 表示数组的规模,数值范围由 0 到 10000),以及一个 查询列表。对于每一个查询,将会给你一个整数,请你返回该数组中小于给定整数的元素的数量。

注意事项

在做此题前,最好先完成 线段树的构造 and 线段树查询 II 这两道题目。

样例

对于数组 [1,2,7,8,5] ,查询 [1,8,5],返回 [0,4,2]

挑战

可否用一下三种方法完成以上题目。

  1. 仅用循环方法
  2. 分类搜索 和 二进制搜索
  3. 构建 线段树 和 搜索

思路

整体思路和 249. 统计前面比自己小的数的个数 相似,区别在于本题是数组中的所有小于给定数的数的个数,而另一题是求数组中在给定数前面所有小于给定数的数的个数,上一题要一边 modify 一边 query,本题可以先把所有数 modify,再 query

注意

构造线段树的时间复杂度为 O(N),查询时间复杂度为 O(logN),更新的时间复杂度为 O(logN)

代码

  1. 线段树的无需手动拆分区间写法
public class Solution {
    /*
     * @param A: An integer array
     * @param queries: The query list
     * @return: The number of element in the array that are smaller that the given integer
     */
    class SegmentTreeNode {
        public int start;
        public int end;
        public int count;
        SegmentTreeNode left;
        SegmentTreeNode right;
        public SegmentTreeNode(int start, int end, int count) {
            this.start = start;
            this.end = end;
            this.count = count;
            this.left = null;
            this.right = null;
        }
    } 
    
    public SegmentTreeNode build(int start, int end, int[] A) {
        if (start > end) {
            return null;
        }
        
        if (start == end) {
            return new SegmentTreeNode(start, end, 0);
        }
        
        SegmentTreeNode root = new SegmentTreeNode(start, end, 0);
        int mid = start + (end - start) / 2;
        root.left = build(start, mid, A);
        root.right = build(mid + 1, end, A);
        if (root.left != null) {
            root.count += root.left.count;
        }
        if (root.right != null) {
            root.count += root.right.count;
        }
        return root;
    }
    
    public int query(SegmentTreeNode root, int start, int end) {
        if (start <= root.start && root.end <= end) {
            return root.count;
        }
        
        int mid = root.start + (root.end - root.start) / 2;
        int ans = 0;
        if (start <= mid) {
            ans += query(root.left, start, end);
        }
        if (end > mid) {
            ans += query(root.right, start, end);
        }
        
        return ans;
    }
    
    public void modify(SegmentTreeNode root, int index, int value) {
        if (root.start == root.end && root.start == index) {
            root.count += value;
            // 没有 return 就会抛出空指针异常
            return;
        }
        
        int mid = root.start + (root.end - root.start) / 2;
        if (index <= mid) {
            modify(root.left, index, value);
        }
        if (index > mid) {
            modify(root.right, index, value);
        }
        root.count = root.left.count + root.right.count;
    }
    
    SegmentTreeNode root;
    public List<Integer> countOfSmallerNumber(int[] A, int[] queries) {
        root = build(0, 10000, A);
        for (int i = 0; i < A.length; i++) {
            modify(root, A[i], 1);
        }
        
        List<Integer> array = new ArrayList<>();
        int res;
        for (int i = 0; i < queries.length; i++) {
            res = 0;
            if (queries[i] > 0) {
                res = query(root, 0, queries[i] - 1);
            }
            array.add(res);
        }
        
        return array;
    }
}
  1. 线段树的手动拆分区间写法
public class Solution {
   /**
     * @param A: An integer array
     * @return: The number of element in the array that 
     *          are smaller that the given integer
     */
    class SegmentTreeNode {
        public int start, end;
        public int count;
        public SegmentTreeNode left, right;
        public SegmentTreeNode(int start, int end, int count) {
              this.start = start;
              this.end = end;
              this.count = count;
              this.left = this.right = null;
        }
    }
    SegmentTreeNode root;
    public SegmentTreeNode build(int start, int end) {
        // write your code here
        if(start > end) {  // check core case
            return null;
        }
        
        SegmentTreeNode root = new SegmentTreeNode(start, end, 0);
        
        if(start != end) {
            int mid = (start + end) / 2;
            root.left = build(start, mid);
            root.right = build(mid+1, end);
        } else {
            root.count =  0;
        }
        return root;
    }
    public int querySegmentTree(SegmentTreeNode root, int start, int end) {
        // write your code here
        if(start == root.start && root.end == end) { // 相等 
            return root.count;
        }
        
        
        int mid = (root.start + root.end)/2;
        int leftcount = 0, rightcount = 0;
        // 左子区
        if(start <= mid) {
            if( mid < end) { // 分裂 
                leftcount =  querySegmentTree(root.left, start, mid);
            } else { // 包含 
                leftcount = querySegmentTree(root.left, start, end);
            }
        }
        // 右子区
        if(mid < end) { // 分裂 3
            if(start <= mid) {
                rightcount = querySegmentTree(root.right, mid+1, end);
            } else { //  包含 
                rightcount = querySegmentTree(root.right, start, end);
            } 
        }  
        // else 就是不相交
        return leftcount + rightcount;
    }
    public void modifySegmentTree(SegmentTreeNode root, int index, int value) {
        // write your code here
        if(root.start == index && root.end == index) { // 查找到
            root.count += value;
            return;
        }
        
        // 查询
        int mid = (root.start + root.end) / 2;
        if(root.start <= index && index <=mid) {
            modifySegmentTree(root.left, index, value);
        }
        
        if(mid < index && index <= root.end) {
            modifySegmentTree(root.right, index, value);
        }
        //更新
        root.count = root.left.count + root.right.count;
    }
    public ArrayList<Integer> countOfSmallerNumber(int[] A, int[] queries) {
        // write your code here
        root = build(0, 10000);
        ArrayList<Integer> ans = new ArrayList<Integer>();
        int res;
        for(int i = 0; i < A.length; i++) {
            modifySegmentTree(root, A[i], 1);
        }
        for(int i = 0; i < queries.length; i++) {
            res = 0;
            if(queries[i] > 0)
                res = querySegmentTree(root, 0, queries[i] - 1);
            ans.add(res);
        }
        return ans;
    }
}
  1. 二分法, 时间复杂度: O((N + K)*logN), N == A.length, K == queries.length,NlogN 将数组排序,然后查找 K 个数,每个数查找所需时间 logN
public class Solution {
    public List<Integer> countOfSmallerNumber(int[] A, int[] queries) {
        if (queries == null || queries.length == 0) {
            return new ArrayList<Integer>();
        }

        List<Integer> ans = new ArrayList<>(queries.length);
        int lenA = (A == null) ? 0 : A.length;

        Arrays.sort(A);
        for (int query : queries) {
            if (lenA == 0) {
                ans.add(0);
            } else {
                ans.add(binarySearch(A, query));
            }
        }

        return ans;
    }

    private int binarySearch(int[] A, int target) {
        int start = 0;
        int end = A.length - 1;

        while (start + 1 < end) {
            int mid = start + (end - start) / 2;

            if (A[mid] < target) {
                start = mid;
            } else {
                end = mid;
            }
        }

        if (target <= A[start]) {
            return start;
        }
        if (target <= A[end]) {
            return end;
        }
        return end + 1;
    }
}
上一篇 下一篇

猜你喜欢

热点阅读